Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Neural Regen Res ; 18(10): 2229-2236, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056142

ABSTRACT

Hypoxic-ischemic encephalopathy, which predisposes to neonatal death and neurological sequelae, has a high morbidity, but there is still a lack of effective prevention and treatment in clinical practice. To better understand the pathophysiological mechanism underlying hypoxic-ischemic encephalopathy, in this study we compared hypoxic-ischemic reperfusion brain injury and simple hypoxic-ischemic brain injury in neonatal rats. First, based on the conventional Rice-Vannucci model of hypoxic-ischemic encephalopathy, we established a rat model of hypoxic-ischemic reperfusion brain injury by creating a common carotid artery muscle bridge. Then we performed tandem mass tag-based proteomic analysis to identify differentially expressed proteins between the hypoxic-ischemic reperfusion brain injury model and the conventional Rice-Vannucci model and found that the majority were mitochondrial proteins. We also performed transmission electron microscopy and found typical characteristics of ferroptosis, including mitochondrial shrinkage, ruptured mitochondrial membranes, and reduced or absent mitochondrial cristae. Further, both rat models showed high levels of glial fibrillary acidic protein and low levels of myelin basic protein, which are biological indicators of hypoxic-ischemic brain injury and indicate similar degrees of damage. Finally, we found that ferroptosis-related Ferritin (Fth1) and glutathione peroxidase 4 were expressed at higher levels in the brain tissue of rats with hypoxic-ischemic reperfusion brain injury than in rats with simple hypoxic-ischemic brain injury. Based on these results, it appears that the rat model of hypoxic-ischemic reperfusion brain injury is more closely related to the pathophysiology of clinical reperfusion. Reperfusion not only aggravates hypoxic-ischemic brain injury but also activates the anti-ferroptosis system.

2.
PLoS One ; 17(12): e0280043, 2022.
Article in English | MEDLINE | ID: mdl-36584071

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0166177.].

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(3): 273-278, 2022 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-35351257

ABSTRACT

OBJECTIVES: To study the application value of metagenomic next-generation sequencing (mNGS) in children with severe infectious diseases. METHODS: An analysis was performed on the clinical data and laboratory test results of 29 children with severe infection who were admitted to the Second Affiliated Hospital of Wenzhou Medical University from June 2018 to December 2020. Conventional pathogen culture was performed for the 29 specimens (27 peripheral blood specimens and 2 pleural effusion specimens) from the 29 children, and mNGS pathogen detection was performed at the same time. RESULTS: Among the 29 children, 2 tested positive by conventional pathogen culture with 2 strains of pathogen, and the detection rate was 7% (2/29); however, 20 children tested positive by mNGS with 38 strains of pathogen, and the detection rate was 69% (20/29). The pathogen detection rate of mNGS was significantly higher than that of conventional pathogen culture (P<0.05), and mNGS could detect the viruses, fungi, and other special pathogens that conventional pathogen culture failed to detect, such as Orientia tsutsugamushi. The univariate analysis showed that gender, routine blood test results, C-reactive protein, procalcitonin, D-dimer, radiological findings, and whether antibiotics were used before admission did not affect the results of mNGS (P>0.05). CONCLUSIONS: Compared with conventional pathogen culture, mNGS is more sensitive for pathogen detection, with fewer interference factors. Therefore, it is a better pathogenic diagnosis method for severe infectious diseases in children.


Subject(s)
Communicable Diseases , Metagenomics , Anti-Bacterial Agents , Child , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Sensitivity and Specificity
4.
RSC Adv ; 10(5): 2677-2690, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-35496090

ABSTRACT

Metabolomics has been used as a promising strategy to evaluate the efficacy of and potential targets for natural products. Alcoholic liver disease (ALD) as a result of chronic ethanol consumption has high morbidity and mortality. Geniposide possesses a hepatoprotective activity against ALD, but its mechanism of action is still not clear. In this study, serum metabolomics based on ultra-performance liquid chromatography-quadrupole time of flight-tandem mass spectrometry (UPLC-Q/TOF-MS) combined with ingenuity pathway analysis was used to explore the therapeutic mechanisms of geniposide. We found that the levels of AST, ALT, MDA, TG, and γ-GT in the geniposide-treated group were significantly decreased, and the level of GSH was significantly increased, compared with the model group. Meanwhile, geniposide effectively inhibits apoptosis and caspase-3 activity in liver tissue. A total of 33 metabolites were identified and related with the model group to illuminate the pathogenesis of ALD, 21 of which are regulated by geniposide, involving the relevant metabolic pathways, such as amino acid metabolism, arachidonic acid metabolism, pyruvate metabolism, TCA cycle, etc. Furthermore, a significant change in amino acid metabolism suggested that it might be a promising mechanism-related target for geniposide against ALD. It also showed that a metabolomic strategy using UPLC-Q/TOF-MS combined with ingenuity pathway analysis is a potentially powerful tool for providing a comprehensive understanding of the therapeutic mechanisms of natural products, but it also offers a theoretical basis for the prevention or treatment of disease.

5.
J Proteomics ; 206: 103447, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31326558

ABSTRACT

Functional metabolomics could bring correlative information about specific cell types under different conditions for exploring cell properties and functions. In this study, we adopt a non-targeted cell metabolomics strategy to reveal the proliferation inhibition mechanism of obacunone on 22RV1 prostate cancer cells. Using high-throughput liquid chromatography-high definition mass spectrometry combined with pattern recognition methods was performed to analyze the cell metabolic profiles and pathway of obacunone on prostate cancer. A total of twenty one proposed metabolites in prostate cancer cell and nine vital metabolic pathways such as nicotinate and nicotinamide metabolism, phenylalanine metabolism as well as tryptophan metabolism were identified from large amounts of data. Then, we have built an overall metabolic description network of obacunone to defense prostate cancer. In addition, morphological observation, cell proliferation and apoptosis analysis of 22RV1 human prostate cancer cells were performed to better understand physiopathologic changes after obacunone treatment. Functional metabolomics is a valuable tool that insight into the natural product mechanisms and contributes to new drug discovery. SIGNIFICANCE: In this study, we probe into the proliferation inhibition effect of obacunone on 22RV1 prostate cancer cells by differentiating metabolic changes of cell sample in control and obacunone administration. Using the non-targeted and targeted cell metabolomics approaches, our findings were manifested that obacunone effectually control proliferation and promote apoptosis in 22RV1 prostate cancer cells, which were related to twenty one proposed metabolites, and nicotinate and nicotinamide metabolism, phenylalanine metabolism, tryptophan metabolism as well as ascorbate metabolism. These data were suggested that functional metabolomics analysis have potential to explore the pharmacodynamic mechanism through resolving metabolic changes in cancer cells that possesses higher clinical application value. The advances in the molecular understanding of the roles of metabolomic pathway concerned with particular metabolites in obacunone administration attract more attention in favor of burgeoning therapeutic measures resisting prostate cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzoxepins/pharmacology , Limonins/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects , Prostatic Neoplasms/metabolism , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Humans , Male , Metabolomics/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Tumor Cells, Cultured
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1102-1103: 143-151, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30391728

ABSTRACT

Prostate cancer is known as a common malignant tumor in clinics and moreover, traditional chemotherapeutic drugs have great toxic side effects and drug resistance. Therefore, the searching the highly efficient and low toxicity antitumor drugs from natural drugs has become an important approach for the treatment of prostate cancer. Many studies showed that Cortex Phellodendri has important therapeutic significance for prostate cancer. Magnoline is the main component of Cortex Phellodendri Amurensis, and it is of great significance to evaluate the effect of magnoline on prostate cancer. By using metabolomics, we established a comprehensive analysis strategy based on cell metabolic analysis to study the inhibitory effect of magnoline on the proliferation of prostate cancer cell line 22RV1, and finally conducted an analysis on the cell metabolism footprint samples. Results showed that magnoline had a significant inhibitory effect on the proliferation of the prostate cancer cell line 22RV1. According to the established cell metabolomics methods, we found that 12 metabolic biomarkers of the cell metabolic footprint samples, respectively, could inhibit the proliferation of prostate cancer cells. Magnoline could significantly affect these metabolic biomarkers to disrupt the growth and proliferation of the prostate cancer cell line 22RV1. Additionally, through MetPA analysis indicated that these biomarkers were closely correlated with a variety of metabolic pathways in tumor cells, including the energy metabolism, amino acid metabolism and fatty acid metabolism, most of which were associated with nutrition and energy metabolism. Therefore, we speculated that because of the disturbance of nutrition metabolism and energy metabolism of the prostate cancer cell line 22RV1, cells could not provide the material basis for rapid proliferation, eventually resulting in the inhibition effect.


Subject(s)
Isoquinolines/metabolism , Metabolome/drug effects , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Isoquinolines/pharmacology , Male , Mass Spectrometry , Metabolomics/methods
7.
PLoS One ; 11(11): e0166177, 2016.
Article in English | MEDLINE | ID: mdl-27855191

ABSTRACT

Potamogeton is one of the most difficult groups to clarify in aquatic plants, which has an extensive range of interspecific morphological and ecological diversity. Internal transcribed spacer (ITS) is prevalent for phylogenetic analysis in plants. However, most researches demonstrate that ITS has a high percentage of homoplasy in phylogenetic datasets. In this study, eighteen materials were collected in Potamogeton from China and incongruence was shown between the rbcL and ITS phylogenies. To solve the discrepancy, we employed a novel barcode PHYB to improve resolution and accuracy of the phylogenetic relationships. The PHYB phylogeny successfully resolved the incongruence between the rbcL and ITS phylogenies. In addition, six hybrids were confirmed using PHYB, including P. compressus × P. pusillus, P. octandrus × P. oxyphyllus, P. gramineus × P. lucens, P. distinctus × P. natans, P. distinctus × P. wrightii, and S. pectinata × S. amblyophylla. Whereas, only one hybrid was identified (P. compressus × P. pusillus) by ITS, indicating that ITS homoplasy was present in Potamogeton and ITS was completely homogenized to one parental lineage. Thus, ITS might have limited utility for phylogenetic relationships in Potamogeton. It is recommended that a three-locus combination of chloroplast DNA gene, ITS and PHYB is potential to effectively reveal more robust phylogenetic relationships and species identification.


Subject(s)
Chimera/genetics , Potamogetonaceae/genetics , DNA Barcoding, Taxonomic , DNA, Ribosomal Spacer/genetics , Genetic Markers , Phylogeny , Plastids/genetics , Potamogetonaceae/classification , Sequence Analysis, DNA
8.
J Biol Chem ; 290(40): 24438-52, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26253172

ABSTRACT

The steroid hormone ecdysone, which controls insect molting and metamorphosis, is synthesized in the prothoracic gland (PG), and several steroidogenic enzymes that are expressed specifically in the PG are involved in ecdysteroidogenesis. In this study, we identified new regulators that are involved in the transcriptional control of the silkworm steroidogenic enzyme genes. In silico analysis predicted several potential cis-regulatory elements (CREs) for the homeodomain transcription factors Antennapedia (Antp) and POU-M2 in the proximal promoters of steroidogenic enzyme genes. Antp and POU-M2 are expressed dynamically in the PG during larval development, and their overexpression in silkworm embryo-derived (BmE) cells induced the expression of steroidogenic enzyme genes. Importantly, luciferase reporter analyses, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Antp and POU-M2 promote the transcription of the silkworm steroidogenic enzyme gene Phantom (Phm) by binding directly to specific motifs within overlapping CREs in the Phm promoter. Mutations of these CREs in the Phm promoter suppressed the transcriptional activities of both Antp and POU-M2 in BmE cells and decreased the activities of mutated Phm promoters in the silkworm PG. In addition, pulldown and co-immunoprecipitation assays demonstrated that Antp can interact with POU-M2. Moreover, RNA interference-mediated down-regulation of either Antp or POU-M2 during silkworm wandering not only decreased the ecdysone titer but also led to the failure of metamorphosis. In summary, our results suggest that Antp and POU-M2 coordinate the transcription of the silkworm Phm gene directly, indicating new roles for homeodomain proteins in regulating insect ecdysteroidogenesis.


Subject(s)
Antennapedia Homeodomain Protein/metabolism , Helminth Proteins/metabolism , Homeodomain Proteins/metabolism , Insect Proteins/metabolism , Metamorphosis, Biological , Mixed Function Oxygenases/metabolism , POU Domain Factors/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Animals , Antennapedia Homeodomain Protein/genetics , Bombyx , Computational Biology , Ecdysone/chemistry , Gene Expression Regulation, Developmental , Helminth Proteins/genetics , Homeodomain Proteins/genetics , Insect Proteins/genetics , Mixed Function Oxygenases/genetics , Molting , Mutation , Nucleopolyhedroviruses/genetics , POU Domain Factors/genetics , Promoter Regions, Genetic , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , RNA Interference , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...