Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Zhejiang Univ Sci B ; 18(8): 685-695, 2017.
Article in English | MEDLINE | ID: mdl-28786243

ABSTRACT

BACKGROUND: Coronary heart disease (CHD) is characterized by arterial wall inflammation and matrix degradation. Matrix metalloproteinase (MMP)-22 and -29 and pro-inflammatory cytokine interleukin-18 (IL18) are present in human hearts. IL18 may regulate MMP-22 and -29 expression, which may correlate with CHD progression. METHODS AND RESULTS: Immunoblot analysis showed that IL18 induced MMP-22 expression in human aortic smooth muscle cells. The Mann Whitney test from a prospective study of 194 CHD patients and 68 non-CHD controls demonstrated higher plasma levels of IL18, MMP-22 and -29 in CHD patients than in the controls. A logistic regression test suggested that plasma IL18 (odds ratio (OR)=1.131, P=0.007), MMP-22 (OR=1.213, P=0.040), and MMP-29 (OR=1.198, P=0.033) were independent risk factors of CHD. Pearson's correlation test showed that IL18 (coefficient (r)=0.214, P=0.045; r=0.246, P=0.031) and MMP-22 (r=0.273, P=0.006; r=0.286, P=0.012) were associated with the Gensini score before and after adjusting for potential confounding factors. The multivariate Pearson's correlation test showed that plasma MMP-22 levels correlated positively with high-sensitive-C-reactive protein (hs-CRP) (r=0.167, P=0.023), and MMP-29 levels correlated negatively with triglyceride (r=-0.169, P=0.018). Spearman's correlation test indicated that plasma IL18 levels associated positively with plasma MMP-22 (r=0.845, P<0.001) and MMP-29 (r=0.548, P<0.001). CONCLUSIONS: Our observations suggest that IL18, MMP-22 and -29 serve as biomarkers and independent risk factors of CHD. Increased systemic IL18 in CHD patients may contribute to elevated plasma MMP-22 and -29 levels in these patients.

3.
PLoS One ; 11(10): e0165255, 2016.
Article in English | MEDLINE | ID: mdl-27764217

ABSTRACT

Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.


Subject(s)
Macrophages/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myocardial Infarction/therapy , Animals , B7-2 Antigen/metabolism , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Heart/physiology , Lectins, C-Type/metabolism , Macrophages/cytology , Macrophages/drug effects , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Neutrophil Infiltration , Neutrophils/cytology , Neutrophils/metabolism , Receptors, Cell Surface/metabolism , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...