Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(8): 14780-14788, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859414

ABSTRACT

We propose and demonstrate a method for characterizing the individual mirror parameters of a fiber Fabry-Perot cavity (FFPC). By measuring the reflection and transmission spectra of the FFPC with an incident laser propagating from the two mirrors of the FFPC and considering several normal or unique losses, the transmittance, reflectance, and intra-cavity loss of the individual mirrors can be determined. Due to the intrinsic limitation of cavity length, traditional powerful methods, such as the cavity ring-down technique, are not applicable to FFPCs for characterizing the parameters of individual mirrors. This scheme provides a dependable method for assessing FFPC mirrors and provides a significant capability for the implementation of strong-coupling cavity quantum electrodynamics based on FFPCs.

2.
Opt Lett ; 49(3): 542-545, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300054

ABSTRACT

We developed a resolved Raman sideband cooling scheme that can efficiently prepare a single optically trapped cesium (Cs) atom in its motional ground states. A two-photon Raman process between two outermost Zeeman sublevels in a single hyperfine state is applied to reduce the phonon number. Our scheme is less sensitive to the variation in the magnetic field than the commonly used scheme where the two outermost Zeeman sublevels belonging to the two separate ground hyperfine states are taken. Fast optical pumping with less spontaneous emission guarantees the efficiency of the cooling process. After cooling for 50 ms, 82% of the Cs atoms populate their three-dimensional ground states. Our scheme improves the long-term stability of Raman sideband cooling in the presence of magnetic field drift and is thus suitable for cooling other trapped atoms or ions with abundant magnetic sublevels.

3.
Phys Rev Lett ; 132(3): 033801, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307075

ABSTRACT

We systematically investigated the intrinsic mechanical flexural modes of tapered optical fibers (TOFs) with a high aspect ratio up to 3×10^{4}. Based on the near-field scattering of the hemispherical microfiber tip to the vibrating TOF evanescent field, we detected more than 320 ordered intrinsic mechanical modes through the TOF transmission spectra which was enhanced by 72 dB compared to without near-field scattering. The trend of the vibration amplitude with the mode order was similar to pendulum waves. Our results open a pathway to study the mechanical modes of photonic microstructures-nanostructures that are expected to be used in waveguide QED, cavity optomechanical, and optical sensing.

4.
Opt Express ; 32(1): 260-274, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175054

ABSTRACT

We propose a theoretical project in which quantum squeezing induces quantum entanglement and Einstein-Podolsky-Rosen steering in a coupled whispering-gallery-mode optomechanical system. Through pumping the χ(2)-nonlinear resonator with the phase matching condition, the generated squeezed resonator mode and the mechanical mode of the optomechanical resonator can generate strong quantum entanglement and EPR steering, where the squeezing of the nonlinear resonator plays the vital role. The transitions from zero entanglement to strong entanglement and one-way steering to two-way steering can be realized by adjusting the system parameters appropriately. The photon-photon entanglement and steering between the two resonators can also be obtained by deducing the amplitude of the driving laser. Our project does not need an extraordinarily squeezed field, and it is convenient to manipulate and provides a novel and flexible avenue for diverse applications in quantum technology dependent on both optomechanical and photon-photon entanglement and steering.

5.
Opt Express ; 31(19): 30005-30019, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710553

ABSTRACT

An optomechanical system is a promising platform to connect different "notes" of quantum networks. Therefore, entanglements generated from it is also of great importance. In this paper, the parameter dependence of optomechanical and optical-optical entanglements generated from the double-longitudinal-mode cavity optomechanical system are discussed and two quadrapartite entanglement generation schemes based on such a system are proposed. Furthermore, 2N and 4N-partite entangled states of optical modes can be obtained by coupling N cavities that used in the above two schemes with N-1 beamsplitters, respectively. Certain ladder or linear entanglement structures are included in the finally obtained entangled state, which are important for its application in one-way quantum computing.

6.
Opt Lett ; 48(11): 2865-2868, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262230

ABSTRACT

Optical bistability (OB) of Rydberg atoms provides a new, to the best of our knowledge, platform for studying nonequilibrium physics and a potential resource for precision metrology. To date, the observation of Rydberg OB has been limited in free space. Here, we explore cavity-enhanced Rydberg OB with a thermal cesium vapor cell. The signal of Rydberg OB in a cavity is enhanced by more than one order of magnitude compared with that in free space. The slope of the phase transition signal at the critical point is enhanced more than 10 times that without the cavity, implying an enhancement of two orders of magnitude in the sensitivity for Rydberg-based sensing and metrology.

7.
Phys Rev Lett ; 130(17): 173601, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172253

ABSTRACT

We experimentally demonstrate strong coupling between a one-dimensional (1D) single-atom array and a high-finesse miniature cavity. The atom array is obtained by loading single atoms into a 1D optical tweezer array with dimensions of 1×11. Therefore, a deterministic number of atoms is obtained, and the atom number is determined by imaging the atom array on a CCD camera in real time. By precisely controlling the position and spacing of the atom array in the high finesse Fabry-Perot cavity, all the atoms in the array are strongly coupled to the cavity simultaneously. The vacuum Rabi splitting spectra are discriminated for deterministic atom numbers from 1 to 8, and the sqrt[N] dependence of the collective enhancement of the coupling strength on atom number N is validated at the single-atom level.

8.
Opt Express ; 31(7): 11775-11787, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155804

ABSTRACT

Multipartite Einstein-Podolsky-Rosen (EPR) steering has been widely studied, for realizing safer quantum communication. The steering properties of six spatially separated beams from the four-wave-mixing process with a spatially structured pump are investigated. Behaviors of all (1+i)/(i+1)-mode (i=1,2,3) steerings are understandable, if the role of the corresponding relative interaction strengths are taken into account. Moreover, stronger collective multipartite steerings including five modes can be obtained in our scheme, which has potential applications in ultra-secure multiuser quantum networks when the issue of trust is critical. By further discussing about all monogamy relations, it is noticed that the type-IV monogamy relations, which are naturally included in our model, are conditionally satisfied. Matrix representation is used to express the steerings for the first time, which is very useful to understand the monogamy relations intuitively. Different steering properties obtained in this compact phase-insensitive scheme have potential applications for different kinds of quantum communication tasks.

9.
Opt Express ; 30(26): 47070-47081, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558644

ABSTRACT

We focus on the generation of mechanical squeezing by using periodically amplitude-modulated laser to drive an active-passive-coupled double-cavity optomechanical system, where the coupled gain cavity and loss cavity can form into a parity-time (P T)-symmetry system. The numerical analysis of the system stability shows that the system is more likely to be stable in the unbroken-P T-symmetry regime than in the broken-P T-symmetry regime. The mechanical squeezing in the active-passive system exhibits stronger robustness against the thermal noise than that in the passive-passive system, and the so-called 3 dB limit can be broken in the resolved-sideband regime. Furthermore, it is also found that the mechanical squeezing obtained in the unbroken-P T-symmetry region is stronger than that in the broken-P T-symmetry region. This work may be meaningful for the quantum state engineering in the gain-loss quantum system that contributes to the study of P T-symmetric physics in the quantum regime.

10.
Sensors (Basel) ; 22(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36433333

ABSTRACT

Unmanned Aerial Vehicle (UAV) robot microwave imaging systems have attracted comprehensive attention. Compared with visible light and infrared imaging systems, microwave imaging is not susceptible to weather. Active microwave imaging systems have been realized in UAV robots. However, the scattering signals of geographical objects from satellite transmitting systems received by UAV robots to process imaging is studied rarely, which reduces the need of load weight for the UAV robot. In this paper, a multi-path scattering model of vegetation on the earth surface is proposed, and then the microwave imaging algorithm is introduced to reconstruct the images from the UAV robot receiving the scattering data based on the multi-path model. In image processing, it is assumed that the orbit altitude of a transmitter loaded on the satellite remains unchanged, and the receiver loaded UAV robot obtains the reflective information from ground vegetation with different zenith angles. The imaging results show that the angle change has an impact on the imaging resolution. The combination of electromagnetic scattering model and image processing method contributes to understanding the image results and the multi-path scattering mechanisms of vegetation, which provide a reference for the research and development of microwave imaging systems of UAV robot networking using satellite transmitting signals.

11.
Opt Express ; 30(20): 35882-35893, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258529

ABSTRACT

We demonstrate optical spectrum detection of a synthetic silica microsphere (SSM) resonator with whispering gallery modes fabricated by chemical methods using an optical nanofiber to touch the SSM. Critical coupling, under coupling and over coupling are obtained by controlling the nanofiber radius. The SSM radius deviation, 0.51 nm, can be obtained through multiple measurements when the nanofiber touches the SSM equatorial planes randomly. The scheme opens a new avenue for accurate sample characterization and sample tracking for microparticle detection.

12.
Appl Opt ; 61(11): 2952-2956, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35471270

ABSTRACT

We propose a monolithic mode separator (MS) for the first-order spatial mode of a light field. The principle of the MS is an asymmetric Mach-Zehnder interferometer, which consists of two non-polarizing beam splitters, a right-angle prism, and a pentagonal prism. These optics are glued together as a monolithic one. The phase difference between the two light paths inside the interferometer is temperature controlled. The separation efficiency for two first-order orthogonal Hermite Gaussian (HG) modes, i.e., HG01 and HG10, is 97.5%, and the overall transmission is 77%. The device is intrinsically stable and convenient to be adopted in various experiments.

13.
Opt Express ; 30(6): 8461-8473, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299298

ABSTRACT

We study continuous variable coherence of phase-dependent squeezed state based on an extended Hanbury Brown-Twiss scheme. High-order coherence is continuously varied by adjusting squeezing parameter r, displacement α, and squeezing phase θ. We also analyze effects of background noise γ and detection efficiency η on the measurements. As the squeezing phase shifts from 0 to π, the photon statistics of the squeezed state continuously change from the anti-bunching (g(n) < 1) to super-bunching (g(n) > n!) which shows a transition from particle nature to wave nature. The experiment feasibility is also examined. It provides a practical method to generate phase-dependent squeezed states with high-order continuous-variable coherence by tuning squeezing phase θ. The controllable coherence source can be applied to sensitivity improvement in gravitational wave detection and quantum imaging.

14.
RNA ; 28(3): 390-399, 2022 03.
Article in English | MEDLINE | ID: mdl-34916333

ABSTRACT

Characterization of RNA-protein interaction is fundamental for understanding the metabolism and function of RNA. UV crosslinking has been widely used to map the targets of RNA-binding proteins, but is limited by low efficiency, requirement for zero-distance contact, and biases for single-stranded RNA structure and certain residues of RNA and protein. Here, we report the development of an RNA-protein crosslinker (AMT-NHS) composed of a psoralen derivative and an N-hydroxysuccinimide ester group, which react with RNA bases and primary amines of protein, respectively. We show that AMT-NHS can penetrate into living yeast cells and crosslink Cbf5 to H/ACA snoRNAs with high specificity. The crosslinker induced different crosslinking patterns than UV and targeted both single- and double-stranded regions of RNA. The crosslinker provides a new tool to capture diverse RNA-protein interactions in cells.


Subject(s)
Cross-Linking Reagents/chemical synthesis , RNA, Small Nucleolar/metabolism , RNA-Binding Proteins/metabolism , Ficusin/chemistry , Protein Binding , RNA, Small Nucleolar/chemistry , RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae
15.
Opt Express ; 29(7): 11158-11168, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820234

ABSTRACT

We propose a scheme to enhance the coupling efficiency of photons from a single quantum emitter into a hole-tailored nanofiber. The single quantum emitter is positioned inside a circular hole etched along the radial axis of the nanofiber. The coupling efficiency can be effectively enhanced and is twice as high as the case in which only an intact nanofiber without the hole is used. The effective enhancement independent of a cavity can avoid the selection of a single emitter for the specific wavelength, which means a broad operating wavelength range. Numerical simulations are performed to optimize the coupling efficiency by setting appropriate diameters of the nanofiber and the hole. The simulation results show that the coupling efficiency can reach 62.8% when the single quantum emitter with azimuthal polarization (x direction) is at a position 200 nm from the middle of the hole along the hole-axial direction. The diameters of the nanofiber and the hole are 800 nm and 400 nm, respectively, while the wavelength of the single quantum emitter is 852 nm. Hole-tailored nanofibers have a simple configuration and are easy to fabricate and integrate with other micro/nanophotonic structures; this fiber structure has wide application prospects in quantum information processing and quantum precision measurement.

16.
Nat Commun ; 12(1): 2389, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888717

ABSTRACT

The realization of optical non-reciprocity is crucial for many applications, and also of fundamental importance for manipulating and protecting the photons with desired time-reversal symmetry. Recently, various new mechanisms of magnetic-free non-reciprocity have been proposed and implemented, avoiding the limitation of the strong magnetic field imposed by the Faraday effect. However, due to the difficulties in separating the signal photons from the drive laser and the noise photons induced by the drive laser, these devices exhibit limited isolation performances and their quantum noise properties are rarely studied. Here, we demonstrate an approach of magnetic-free non-reciprocity by optically-induced magnetization in an atom ensemble. Excellent isolation (highest isolation ratio is [Formula: see text]) is observed over a power dynamic range of 7 orders of magnitude, with the noiseless property verified by quantum statistics measurements. The approach is applicable to other atoms and atom-like emitters, paving the way for future studies of integrated photonic non-reciprocal devices.

17.
Opt Express ; 28(24): 36122-36130, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379714

ABSTRACT

We present two sets of versatile high-numerical-apeture objectives suitable for various cold-atom experiments. The objectives are assembled entirely by the commercial on-shelf singlets. The two objectives are initially optimized at working wavelength of 852 nm with a standard 5-mm silica optical flat window. They have numerical apertures of NA=0.55 and NA=0.78, working distances of 23 and 12.8 mm, diffraction-limited fields of view of 98 and 15 µm, and spatial resolutions of 0.94 and 0.67 µm, respectively. These performances are simulated by the ray-tracing software and experimentally confirmed by imaging line patterns and a point-like emitter on a resolution chart. The two objectives can be further reoptimized at any single wavelengths from ultraviolet to near infrared and for various optical flat window with different thickness by only tuning one of lens spacing. The two objectives provide convenient and flexible options to observe and address individual atoms in single atom arrays or optical lattices for various cold-atom experiments.

18.
Rev Sci Instrum ; 91(4): 043104, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357718

ABSTRACT

We present a long-working-distance objective lens with numerical apertures NA = 0.4 for single-atom experiments. The objective lens is assembled entirely by the commercial on-catalog Φ1″ singlets. The objective can correct the spherical aberrations due to the standard flat vacuum glass windows with various thicknesses. The typical working distance is 18.2 mm at the design wavelength of 852 nm with a 5-mm thick silica window. In addition, the objective can also be optimized to work at the diffraction limit at a single wavelength in the entire visible and near infrared regions by slightly tuning the distance between the first two lenses. The diffraction limited field of view is 0.61 mm, and the spatial resolution is 1.3 µm at the design wavelength. The performances are simulated by using the commercial ray-tracing software and confirmed by imaging the resolution chart and a 1.18 µm pinhole. The objective can be used for trapping and manipulating single atoms of various species.

19.
Phys Rev Lett ; 123(23): 233604, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868453

ABSTRACT

Optical nonreciprocity is important in photonic information processing to route the optical signal or prevent the reverse flow of noise. By adopting the strong nonlinearity associated with a few atoms in a strongly coupled cavity QED system and an asymmetric cavity configuration, we experimentally demonstrate the nonreciprocal transmission between two counterpropagating light fields with extremely low power. The transmission of 18% is achieved for the forward light field, and the maximum blocking ratio for the reverse light is 30 dB. Though the transmission of the forward light can be maximized by optimizing the impedance matching of the cavity, it is ultimately limited by the inherent loss of the scheme. This nonreciprocity can even occur on a few-photon level due to the high optical nonlinearity of the system. The working power can be flexibly tuned by changing the effective number of atoms strongly coupled to the cavity. The idea and result can be applied to optical chips as optical diodes by using fiber-based cavity QED systems. Our work opens up new perspectives for realizing optical nonreciprocity on a few-photon level based on the nonlinearities of atoms strongly coupled to an optical cavity.

20.
ACS Omega ; 4(7): 12927-12937, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460419

ABSTRACT

Polymer brushes have wide application in surface modification. We study dense, short polymer brushes immersed in a mixing solvent under athermal conditions using the classical density functional theory. The brush polymer is short so that the equilibrium behavior of the brush deviates far from the scaling laws for infinite brush chains. The excluded volume interaction is the only interaction in the system. We compare the excluded volume effect of solvent molecules of different shapes. Two types of mixing solvents are considered: solvent composed of linear oligomers and monomers, or that of spherical particles and monomers. The effects of grafting density, solvent molecular size, and solvent number density on the brush height, the density profiles, the relative excess adsorption, and the brush-solvent interface width are systematically analyzed. In the adsorption aspect, the spherical particles have stronger ability than the linear oligomers do to penetrate through the brush layer and gather at the substrate. In the screening aspect, the oligomers are more capable of screening the excluded volume interaction between the brush chains than the spherical particles. The brush-solvent interface width decreases monotonically with increasing oligomer length, but it has a minimum with the increasing spherical particle size. Our research differentiates the attractive-interaction-induced phenomenon and the volume-exclusion-induced phenomenon in dense brush systems and exhibits the difference in the antifouling properties of the brushes contacting solvent molecules of different shapes.

SELECTION OF CITATIONS
SEARCH DETAIL
...