Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 12: 1371656, 2024.
Article in English | MEDLINE | ID: mdl-38651126

ABSTRACT

Given the dense population on university campuses, indoor and outdoor airborne bacterial contamination may lead to the rapid spread of diseases in a university environment. However, there are few studies of the characteristics of airborne and pathogenic bacterial communities in different sites on a university campus. In this study, we collected particulate matter samples from indoor and outdoor locations at a university in Bengbu City, Anhui Province, China, and analyzed the community characteristics of airborne and pathogenic bacteria using a high-throughput sequencing technique. The results showed that the composition of the dominant airborne and pathogenic bacterial communities was consistent among sites at the phylum and genus levels, with differences in their relative abundance. There were significant differences in the structure of the airborne and pathogenic bacterial communities between indoor and outdoor sites (p < 0.05). An analysis of similarities (ANOSIM) indicated that the structure of airborne bacterial communities in indoor sites was influenced by the room occupancy rate, ventilation conditions, and the extent of indoor furnishing (p < 0.05), while the structure of pathogenic bacterial communities was influenced by the number of individuals and spatial dimensions (p < 0.05). The impact of particle size on the structure of airborne and pathogenic bacterial communities was relatively minor. A total of 194 suspected pathogenic bacterial species were identified, accounting for 0.0001-1.3923% of the total airborne bacteria, all of which were conditional pathogens. Among them, Saccharopolyspora rectivirgula, Acinetobacter johnsonii, and Moraxella osloensis exhibited relatively high relative abundance, accounting for 24.40, 16.22, and 8.66% of the total pathogenic bacteria, respectively. Moreover, 18 emerging or re-emerging pathogenic bacterial species with significant implications for human health were identified, although their relative abundance was relatively low (0.5098%). The relative abundance of pathogenic bacteria in indoor environments was significantly higher than outdoors, with the laboratory and dormitory having the highest levels. The findings of this study provide valuable guidance for the prevention and control of airborne bacterial contamination and the associated health risks in both a campus environment and other public spaces with high occupancy rates.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Bacteria , Particle Size , Particulate Matter , Universities , China , Bacteria/isolation & purification , Bacteria/classification , Humans , Air Pollution, Indoor/analysis , Particulate Matter/analysis , Environmental Monitoring
2.
Sci Rep ; 14(1): 5080, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429521

ABSTRACT

The polycyclic aromatic hydrocarbon (PAH) concentrations in total suspended particulate matter (TSP) samples collected from October, 2021 to September, 2022 were analyzed to clarify the pollution characteristics and sources of 16 PAHs in the atmospheric TSP in Bengbu City. The ρ(PAHs) concentrations ranged from 1.71 to 43.85 ng/m3 and higher concentrations were detected in winter, followed by spring, autumn, and summer. The positive matrix factorization analysis revealed that, in spring and summer, PAH pollution was caused mainly by industrial emissions, gasoline and diesel fuel combustion, whereas in autumn and winter, it was coal, biomass and natural gas combustion. The cluster and potential source factor analyses showed that long-range transport was a significant factor. During spring, autumn, and winter, the northern and northwestern regions had a significant impact, whereas the coastal area south of Bengbu had the greatest influence in summer. The health risk assessment revealed that the annual total carcinogenic equivalent concentration values for PAHs varied from 0.0159 to 7.437 ng/m3, which was classified as moderate. Furthermore, the annual incremental lifetime cancer risk values ranged from 1.431 × 10-4 to 3.671 × 10-3 for adults and from 6.823 × 10-5 to 1.749 × 10-3 for children, which were higher than the standard.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Adult , Child , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring , Risk Assessment , Gasoline , China
3.
Comb Chem High Throughput Screen ; 24(9): 1417-1427, 2021.
Article in English | MEDLINE | ID: mdl-33155889

ABSTRACT

BACKGROUND: In Traditional Chinese Medicine (TCM), the heads and tails of Angelica sinensis (Oliv.) Diels (AS) is used in treating different diseases due to their different pharmaceutical efficacies. The underline mechanisms, however, have not been fully explored. OBJECTIVE: Novel mechanisms responsible for the discrepant activities between AS heads and tails were explored by a combined strategy of transcriptomes and metabolomics. METHODS: Six pairs of the heads and tails of AS roots were collected in Min County, China. Total RNA and metabolites, which were used for RNA-seq and untargeted metabolomics analysis, were respectively isolated from each AS sample (0.1 g) by Trizol and methanol reagent. Subsequently, differentially expressed genes (DEGs) and discrepant pharmaceutical metabolites were identified for comparing AS heads and tails. Key DEGs and metabolites were quantified by RT-qPCR and targeted metabolomics experiment. RESULTS: Comprehensive analysis of transcriptomes and metabolomics results suggested that five KEGG pathways with significant differences included 57 DEGs. Especially, fourteen DEGs and six key metabolites were related to the metabolic regulation of Phenylpropanoid biosynthesis (PB) pathway. Results of RT-qPCR and targeted metabolomics indicated that higher levels of expression of crucial genes in PB pathway, such as PAL, CAD, COMT and peroxidase in the tail of AS, were positively correlated with levels of ferulic acid-related metabolites. The average content of ferulic acid in tails (569.58±162.39 nmol/g) was higher than those in the heads (168.73 ± 67.30 nmol/g) (P.


Subject(s)
Angelica sinensis/genetics , Angelica sinensis/metabolism , Metabolomics , Propionates/metabolism , Chromatography, High Pressure Liquid , Mass Spectrometry , Propionates/chemistry , RNA/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...