Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 11(1): 11599, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078920

ABSTRACT

This paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new "Materials Barcode" schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds.

2.
RSC Adv ; 9(66): 38422-38429, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-35540241

ABSTRACT

Antibiotics are commonly used in livestock-related agriculture and aquaculture, but they also remain in water and potentially threaten human health. Immunosensors are attractive tools for the rapid detection of antibiotics in water due to their high sensitivity and low costs. However, the simultaneous detection of multi-class antibiotics remains a challenge due to the limited number of detection sites on the immunochip. Also, matrix effects hinder the practical application of these sensors. This paper presents a method for multi-class antibiotic detection in real water using a planar waveguide immunosensor (PWI). We integrate the screening and quantitive detection sites on the same immunochip, and a single screening detection site could detect multi-class antibiotics from the same family, increasing the detection types of analytes. In addition, to eliminate the matrix effects, we develop a testing buffer for real water detection, so that complex pretreatments of the samples can be omitted. Using our sensor and testing buffer, we detect 14 different antibiotics in real water. Lincomycin can be detected with a detection limit of 0.01 µg L-1, and 13 quinolones can be screened in a single assay. These results demonstrate that this planar waveguide immunosensor is capable of simultaneous screening and quantification of multi-class antibiotic pollutants and is expected to be applied for practical environmental monitoring.

3.
ACS Appl Mater Interfaces ; 10(9): 8148-8154, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29436812

ABSTRACT

Phosphorescent organic light-emitting diodes (OLEDs) possess the property of high efficiency but have serious efficiency roll-off at high luminance. Herein, we manufactured high-efficiency phosphorescent OLEDs with extremely low roll-off by effectively locating the ultrathin emitting layer (UEML) away from the high-concentration exciton formation region. The strategic exciton management in this simple UEML architecture greatly suppressed the exciton annihilation due to the expansion of the exciton diffusion region; thus, this efficiency roll-off at high luminance was significantly improved. The resulting green phosphorescent OLEDs exhibited the maximum external quantum efficiency of 25.5%, current efficiency of 98.0 cd A-1, and power efficiency of 85.4 lm W-1 and still had 25.1%, 94.9 cd A-1, and 55.5 lm W-1 at 5000 cd m-2 luminance, and retained 24.3%, 92.7 cd A-1, and 49.3 lm W-1 at 10 000 cd m-2 luminance, respectively. Compared with the usual structures, the improvement demonstrated in this work displays potential value in applications.

4.
Sci Rep ; 7(1): 4346, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659592

ABSTRACT

Broadband light trapping and field localization is highly desired in enhanced light-matter interaction, especially in harmonic generations. However, due to the limited resonant bandwidth, most periodic plasmonic nanostructures cannot cover both fundamental excitation wavelength and harmonic generation wavelength simultaneously. Therefore, most previously reported plasmonic nonlinear optical processes are low in conversion efficiency. Here, we report a strong enhancement of second harmonic generation based on a three-layered super absorbing metasurface structure consisting of a dielectric spacer layer sandwiched by an array of random metallic nanoantennas and a metal ground plate. Intriguingly, the strong light trapping band (e.g. >80%) was realized throughout the entire visible to near-infrared spectral regime (i.e., from 435 nm to 1100 nm), enabling plasmonically enhanced surface harmonic generation and frequency mixing across a broad range of excitation wavelengths, which cannot be achieved with narrow band periodic plasmonic structures. By introducing hybrid random antenna arrays with small metallic nanoparticles and ultra-thin nonlinear optical films (e.g. TiO2) into the nanogaps, the nonlinear optical process can be further enhanced. This broadband light-trapping metastructure shows its potential as a building block for emerging nonlinear optical meta-atoms.

5.
PLoS One ; 12(5): e0177348, 2017.
Article in English | MEDLINE | ID: mdl-28486516

ABSTRACT

The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT) alone or in combination with chicken telomerase RNA (chTR). Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types.


Subject(s)
Retroviridae/genetics , Telomerase/genetics , Transduction, Genetic , Adipocytes/metabolism , Animals , Cell Line, Transformed , Chickens , Cloning, Molecular , Genetic Vectors , Polymerase Chain Reaction , RNA/genetics
6.
Poult Sci ; 94(10): 2516-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286997

ABSTRACT

Peroxisome proliferator-activated receptor gamma regulates adipogenesis. The genomic structure of the chicken peroxisome proliferator-activated receptor gamma (cPPARγ) gene has not been fully characterized, and only one cPPARγ gene mRNA sequence has been reported in genetic databases. Using 5' rapid amplification of cDNA ends, we identified five different cPPARγ mRNAs that are transcribed from three transcription initiation sites. The open reading frame analysis showed that these five cPPARγ transcript variants (cPPARγ1 to 5) could encode two cPPARγ protein isoforms (cPPARγ1 and cPPARγ2), which differ only in their N-terminal region. Quantitative real-time RT-PCR analysis showed that, of these five cPPARγ transcript variants, cPPARγ1 was ubiquitously highly expressed in various chicken tissues, including adipose tissue, liver, kidney, spleen and duodenal; cPPARγ2 was exclusively highly expressed in adipose tissue; cPPARγ3 was highly expressed in adipose tissue, kidney, spleen and liver; cPPARγ4 and cPPARγ5 were ubiquitously weakly expressed in all the tested tissues, and comparatively, cPPARγ5 was highly expressed in adipose tissue, heart, liver and kidney. The comparison of the expression of the five cPPARγ transcript variants showed that adipose tissue cPPARγ1 expression was significantly higher in the fat line than in the lean line from 2 to 7 wk of age (P < 0.05 or P < 0.01). Adipose tissue cPPARγ3 expression was significantly higher in the fat line than in the lean line at 3, 5 and 6 wk of age (P < 0.01, P < 0.05), but lower at 4 wk of age (P < 0.05). Adipose tissue cPPARγ5 expression was significantly higher in the fat line than in the lean line at 3, 4, and 6 wk of age (P < 0.01) and at 2 and 7 wk of age (P < 0.05). This is the first report of transcript variants and protein isoforms of cPPARγ gene. Our findings provided a foundation for future investigations of the function and regulation of cPPARγ gene in adipose tissue development.


Subject(s)
Avian Proteins/genetics , Chickens/genetics , Gene Expression Regulation , PPAR gamma/genetics , Animals , Avian Proteins/metabolism , Base Sequence , Chickens/metabolism , Molecular Sequence Data , Organ Specificity , PPAR gamma/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Sequence Alignment
7.
ACS Appl Mater Interfaces ; 6(20): 18018-25, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25238319

ABSTRACT

The efficiency of most photovoltaic devices is severely limited by near-infrared (NIR) transmission losses. To alleviate this limitation, a new type of colloidal upconversion nanoparticles (UCNPs), hexagonal core-shell-structured ß-NaYbF4:Er(3+)(2%)/NaYF4:Nd(3+)(30%), is developed and explored in this work as an NIR energy relay material for dye-sensitized solar cells (DSSCs). These UCNPs are able to harvest light energy in multiple NIR regions, and subsequently convert the absorbed energy into visible light where the DSSCs strongly absorb. The NIR-insensitive DSSCs show compelling photocurrent increases through binary upconversion under NIR light illumination either at 785 or 980 nm, substantiating efficient energy relay by these UCNPs. The overall conversion efficiency of the DSSCs was improved with the introduction of UCNPs under simulated AM 1.5 solar irradiation.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(3): 703-7, 2012 Mar.
Article in Chinese | MEDLINE | ID: mdl-22582637

ABSTRACT

Melamine was used in foodstuff and feed industry as a feed additive occasionally. In the present work, melamine geometry structure was optimized by density functional theory (DFT) method. Raman and infrared spectra were calculated based on MP2/6-31G sets and DFT/DGTIVP sets, and then two theoretical Raman spectra were carefully compared with other experimental spectra. Good agreements were obtained between the theoretical and experimental results. Melamine structure parameters were given also in the paper including bond lengths and bond angles. Vibrational modes were assigned to all bands in the 550-4 000 cm(-1) range. This work will benefit the measurement research of the content of melamine in foods.

SELECTION OF CITATIONS
SEARCH DETAIL
...