Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(6): 3627-3637, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897782

ABSTRACT

In order to explore the evolution law and driving mechanism of aerobic denitrification bacteria in Baiyangdian Lake under different hydrological scenarios, based on water quality survey and high-throughput sequencing technology, this study conducted a water quality factor analysis and aerobic denitrification bacteria α-diversity analysis, species composition, and network analysis. The results showed that the water body of Baiyangdian Lake was weakly alkaline, with the highest T and the lowest DO in the rainy season and the lowest T and the highest DO in the freezing season. There were significant differences between NH4+-N, NO2--N, NO3--N, TN, permanganate index, Fe, and Mn in Baiyangdian water under different hydrological scenarios (P < 0.01), and there was no significant difference in TP under different hydrological scenarios (P > 0.05). The largest category in water bodies under different hydrological scenarios was Proteobacteria, and the genera with a higher relative abundance were Magnetospirillum, Aeromonas, Pseudomonas, Azospirillum, and Bradyrhizobium. In addition, within the aerobic denitrifying bacteria community, there were significant differences in α-diversity (P < 0.001), with the highest abundance of microbial communities occurring during the freezing period, and the highest diversity and evenness of microbial communities during the dry and freezing periods. According to the RDA and Mantel analyses, the water quality driving factors of flora were different under different hydrological scenarios. The water quality driving factors of flora in the dry season were pH, NO3--N, NO2--N, and permanganate index; the driving factors of flora in the rainy season were pH, T, DO, NO2--N, and TP; the driving factors of flora in the normal season were NO2--N, Fe, and permanganate index; and the driving factors of flora in the freezing season were NO3--N and NONO2--N. Network analysis showed that there were temporal differences in species related to water quality driving factors. The genera related to water quality driving factors during the dry season were Magnetospirillum, Aeromonas, and Azoarcus, whereas the genera related to the rainy season were Magnetospirillum, Pseudomonas, and Aeromonas. The genera related to the normal season were Magnetospirillum, Pseudomonas, and Limnohabitans, and the genera related to the freezing period were Magnetospirillum, Azoarcus, and Pseudomonas. The relationship between key water quality factors (mainly T, DO, NO3--N, and permanganate index) and aerobic denitrification flora in different hydrological scenarios was gradually changing with time. In conclusion, the study on the evolution characteristics of aerobic denitrification bacteria in Baiyangdian Lake under different hydrological scenarios and the driving mechanism of environmental factors could provide a basis for understanding the evolution mechanism of aerobic denitrification bacteria in the natural environment.


Subject(s)
Denitrification , Lakes , Water Quality , China , Lakes/microbiology , Hydrology , Bacteria, Aerobic/metabolism , Bacteria, Aerobic/isolation & purification , Environmental Monitoring , Proteobacteria/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
2.
Environ Res ; 224: 115524, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36813068

ABSTRACT

Revealing the responses of abundant and rare aerobic denitrifying bacteria to dissolved organic matter (DOM) composition is essential for understanding the aquatic N cycle ecosystems. In this study, fluorescence region integration and high-throughput sequencing techniques were used to investigate the spatiotemporal characteristics and dynamic response of DOM and aerobic denitrifying bacteria. The DOM compositions were significantly different among the four seasons (P < 0.001) without spatial differences. Tryptophan-like substances (P2, 27.89-42.67%) and microbial metabolites (P4, 14.62-42.03%) were the dominant components, and DOM exhibited strong autogenous characteristics. Abundant (AT), moderate (MT), and rare taxa (RT) of aerobic denitrifying bacteria showed significant and spatiotemporal differences (P < 0.05). The responses of α-diversity and niche breadth of AT and RT to DOM differed. The DOM explanation proportion for aerobic denitrifying bacteria exhibited spatiotemporal differences based on redundancy analysis. Foliate-like substances (P3) had the highest interpretation rate of AT in spring and summer, while humic-like substances (P5) had the highest interpretation rate of RT in spring and winter. Network analysis showed that RT networks were more complex than AT networks. Pseudomonas was the main genus associated with DOM in AT on a temporal scale, and was more strongly correlated with tyrosine-like substances (P1), P2, and P5. Aeromonas was the main genus associated with DOM in AT on a spatial scale and was more strongly correlated with P1 and P5. Magnetospirillum was the main genus associated with DOM in RT on a spatiotemporal scale, which was more sensitive to P3 and P4. Special operational taxonomic units were transformed between AT and RT with seasonal changes, but not between the two regions. To summarize, our results revealed that bacteria with different abundances utilized DOM components differently, and provides new insight on the spatiotemporal response of DOM and aerobic denitrifying bacteria in aquatic ecosystems of biogeochemical significance.


Subject(s)
Dissolved Organic Matter , Lakes , Lakes/chemistry , Ecosystem , Water , Bacteria , China , Humic Substances/analysis , Spectrometry, Fluorescence/methods
3.
Sci Total Environ ; 868: 161615, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36681331

ABSTRACT

Dissolved Organic Matter (DOM), an important part of the carbon cycle in reservoir ecosystems, has a great impact on aquatic environment to recognize the conversion process of different media DOM. The distribution, spectral characteristics, and sources of DOM in Gangnan Reservoir during thermal stratification were analyzed using ultraviolet-visible absorption spectroscopy and excitation-emission matrix spectroscopy. Three humic-like components (C2, C3, and C4) and two protein-like components (C1 and C5) were identified. The proportions of the humic-like components increased with the progression of thermal stratification (C2 and C3 were dominant), whereas the protein-like components decreased in proportion, and the trend in the interstitial water was constant (C3 and C4 were dominant). The proportion of the humic-like components in the sediments was highest during the stationary period of thermal stratification (C2 and C3 were dominant). C2 and C3 were significantly correlated in the water body and interstitial water (P < 0.001), while C1 and C5 were correlated in the sediment (P < 0.05). In the water body, C2 and C3 were negatively correlated during the formative period of thermal stratification (slope = -1.85; R2 = 0.52), strongly positively correlated during the stationary period (slope = 0.76; R2 = 0.94), and positively correlated during the weakening period of thermal stratification (slope = 0.46; R2 = 0.30). With the progression of thermal stratification, the relative contribution of endogenous substances decreased gradually, whereas the humification degree increased in the water body and interstitial water. The protein-like components and key physicochemical factors (Fe, Mn, TN, TP, and CODMn) were significantly correlated during the formative period (P < 0.05), and humic-like components and key physicochemical factors (NO2--N and TN) were significantly correlated during the stationary and weakening periods (P < 0.05). C1, C4, and C5 indicated NO3--N during the formative period; C2 and C3 indicated NO3--N during the stationary period; and C2 and C4 indicated NO3--N during the weakening period in the water body. These findings enhance the understanding the mutual transformation processes of DOM in reservoir ecosystems and could guide water quality management.

4.
Bioresour Technol ; 362: 127873, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049711

ABSTRACT

The denitrification performance of immobilized mixed aerobic denitrifying bacteria (IMADB) was investigated. IMADB displayed strong temperature adaptability under low Carbon/Nitrogen conditions. At 5, 15, and 25 °C, the nitrate removal efficiencies of volcanic rock and polyester fiber sponge immobilized system reached 83.95%-98.25% and 89.71%-98.14%, respectively. The nitrate content removed by the carrier accounted for 41.18%-82.47% of the nitrate content removed by the immobilized system at different temperature, and played a major role in nitrate removal. The lower the temperature, the greater the role of the carrier. At the same temperature, carrier had a relatively higher richness, diversity, and evenness. Network analysis revealed that carrier species, which were positively correlated with nitrate removal efficiency, had the largest OTUs and abundance. Meanwhile, carrier had the widest niche. The total nitrogen removal efficiency of IMADB reached 56.10%-62.31% in the natural water system, highlighting a promising application prospect.


Subject(s)
Nitrates , Nitrogen , Bacteria, Aerobic , Carbon , Denitrification , Nitrogen Oxides , Temperature , Water
5.
Huan Jing Ke Xue ; 43(1): 314-328, 2022 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-34989516

ABSTRACT

In order to study the spatial and temporal distribution characteristics of aerobic denitrification bacteria in the sediments of Gangnan Reservoir, the aerobic denitrification bacterial community was analyzed using a MiSeq high-throughput sequencing technique based on the napA gene. Moreover, the composition, diversity, difference, and network analysis of the aerobic denitrification bacterial community were investigated. The results showed higher α-diversity (Chao1 index, Observed species index, and Shannon index) in autumn and winter than that in spring and summer; that is, the richness and diversity of sampling sites in autumn and winter were higher. In terms of spatial distribution, the Chao1 index, Observed species index, Shannon index, and Simpson index of the bacterial community in the sampling sites in the transition zone were higher than those in the sampling sites in the inflow area and the main reservoir area, indicating that the richness and diversity of the bacterial community in the sampling sites in the transition zone were the highest. The aerobic denitrifying bacteria in the sediments of Gangnan Reservoir mainly belong to Protebacteria. The first dominant class was ß-Proteobacteria, and the first dominant genus was Thauera. A Venn diagram analysis indicated that the community of aerobic denitrification bacteria exhibited significant spatial and temporal differences. At the spatial level, there were higher numbers of different species based on LEfSe analysis than that at the seasonal level. Among the marker species screened by random forest analysis, Comamonas had the highest contribution in all spatial sampling sites, whereas Pectobacterium had the highest contribution in all seasonal sampling sites. Network analysis showed that there were nine modules, including 565 edges of 297 nodes; 47 keystone species were obtained based on the indicator OTUs analysis and network analysis. The principal co-ordinates analysis revealed that keystone species in the spatial distribution exhibited significant differences (Adonis, P<0.001). The results of this study provide scientific basis for the separation and identification of efficient aerobic denitrifying bacteria.


Subject(s)
Bacteria , Denitrification , Bacteria/genetics
6.
Huan Jing Ke Xue ; 43(2): 813-825, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075855

ABSTRACT

Landscape water is an important part of urban water systems, and excessive nitrogen affects its ecological functions. This study aimed to investigate the temporal and spatial distribution characteristics and driving factors of the community structure of denitrifying bacteria from landscape water. The functional gene nirS was used as a functional marker to explore the community of denitrifying bacteria in the water and sediment of landscape water. Based on parameters of the water and sediment, the temporal and spatial distribution characteristics and driving factors of the community of denitrifying bacteria were studied. The results showed significant seasonal differences in water parameters and spatial differences in sediment nitrogen (P<0.001). No significant difference (P>0.05) was observed in α-diversity; the EC and SOEF-NH4+-N were important factors affecting the α-diversity of the water and sediment. Denitrifying bacteria mainly belonged to the phylum Proteobacteria and the genera Dechloromonas, Rhodocyclaceae, Pseudomonas, Rhodobacter, and Thauera. Principal coordinate analysis revealed that the community of denitrifying bacteria in the water and sediment exhibited significant spatial differences (P<0.001); keystone denitrifying bacteria in the water also exhibited significant spatial differences (P<0.001). RDA and RF analysis showed that the permanganate index and TP were the main environmental factors affecting the total and keystone denitrifying bacteria in the water; SOEF-NH4+-N, IEF-NH4+-N, and WAEF-NO3--N were the main environmental factors affecting the total and keystone denitrifying bacteria in the sediment. These findings could serve as a reference to understand the interaction mechanism between nitrogen and denitrification bacterial communities in landscape water.


Subject(s)
Denitrification , Water , Bacteria/genetics , Nitrogen
7.
Huan Jing Ke Xue ; 42(11): 5250-5263, 2021 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-34708964

ABSTRACT

Dissolved organic matter(DOM) is an important component of the organic matter in the environment. This study explored the characteristics of DOM. The components and spectral characteristics of rainwater DOM were measured using Ultraviolet-visible absorption spectrum(UV-vis) and three-dimensional fluorescence spectrum in the Hebei province. The results showed significant differences for DOM molecular weight in the northern, central, and southern region; the DOM of the northern region exhibited the lowest molecular weight. Two humic-like(C1 and C4), one protein-like(C2) and one fulvic-like(C3) components were identified by parallel factor(PARAFAC) analysis. Component C2 had a significant positive correlation with components C3 and C4(P<0.001), which may have similar sources. The C2(protein-like substances) accounted for the major proportion of DOM with the average abundance 40.59%. The DOM components based on PARAFAC exhibited significantly difference between city and country regions without spatial difference, which was consistent with the result of fluorescence regional integration(FRI). The protein-like substances based on FRI were the main components, which accounted for 61.59%-89.01%. Redundancy analysis(RDA) showed that total nitrogen, nitrate, and ammonia were the main environmental factors determining the distribution of DOM. Spectral indices presented a significant difference between city and country regions. High fluorescence(FI) and biological(BIX) and low humification(HIX) values showed that summer rain exhibited the strong autochthonous and low humification characteristics, and country region have stronger autochthonous characteristics than city region. The regression analysis demonstrates that the prediction accuracy of rainwater quality parameters in city region is high. From all the results, rainwater DOM, showing strong autogenous characteristics, exhibited significant differences between city and country regions without spatial difference in Hebei. Meanwhile, it can also provide technical support for rainwater nitrogen concentration prediction based on DOM components.


Subject(s)
Nitrogen , Seasons , Spectrometry, Fluorescence
8.
Huan Jing Ke Xue ; 42(9): 4319-4331, 2021 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-34414730

ABSTRACT

Dissolved organic matter (DOM) plays an important role in the evolution of microbial communities. Meanwhile, ecological water delivery is an important feature of Baiyangdian Lake. To explore how the structure of the aerobic denitrification bacteria community responds to DOM during the water delivery period, the DOM components of water were examined and high-throughput sequencing of aerobic denitrification bacteria was performed. The results showed significant differences in DOM concentration in Baiyangdian Lake, with the estuary area exhibiting lower DOM concentrations. The water exhibited strong autogenous source, while DOM in the estuary area had a higher molecular weight and degree of humification. Three protein-like substances (C1, C2, and C4) and one humic-like substance (C3) were identified through PARAFAC. The protein-like substances accounted for the major proportion of DOM, which was consistent with the results of fluorescence regional integration (FRI). The genera of the water body were mainly in the Protebacterice phylum, including Cupriavidus, Aeromonas, Thauera, Shewanella, and Pseudomonas. Meanwhile, Cupriavidus, Thauera, Shewanella, Agrobacterium, and Pseudomonas were the main indicator species, according to random forest (RF) analysis. Through network analysis, 35 key nodes of the network were obtained, belonging to Thauera, Cupriavidus, and Unclassified_bacteria, respectively. Redundancy analysis (RDA) showed that a humic-like substance was the main environmental factor regulating the whole structure of the aerobic denitrification bacterial community, while protein-like substances played important roles in changes to the indicator species and key nodes of the community. Overall, protein-like substances could provide an important reference for selecting carbon sources during the screening of efficient and cold resistance aerobic denitrification bacteria that are adapted to actual water bodies.


Subject(s)
Denitrification , Lakes , Bacteria/genetics , Estuaries , Water
9.
Huan Jing Ke Xue ; 42(7): 3176-3185, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212643

ABSTRACT

In order to reveal the interaction of overlying water-interstitial water nitrogen and phosphorus nutrient salt in summer at the entrance region of Baiyangdian Lake, this study sampled six main rivers in the region during July 2019. An analysis of the overlying water and interstitial water quality characteristics and the diffusion flux of applied nutrients at the sediment-water interface revealed the effects of nutrient diffusion on sediments and overlying water. The overlying water analysis showed that the water quality was slightly alkaline in the Baiyangdian Lake. The content of dissolved oxygen (DO) was lower, which provided an anaerobic environment for the release of endogenous pollutants from sediments. The ammonia nitrogen (NH4+-N) ranged from 0.35 to 1.76 mg·L-1, and the content of ammonia nitrogen was the highest in the Zhulong River, which was the main source of water supply. The nitrate nitrogen (NO3--N) content ranged from 0.75 to 1.97 mg·L-1. The total dissolved nitrogen (TDN) ranged from 0.99 to 2.70 mg·L-1, and the content of TDN was the highest in Puhe River. The content of total dissolved phosphorus (TDP) was 0.03 to 0.15 mg·L-1, and the content of TDP was the highest was Baigouyin River, which is near the residential area. The results indicated that the content of ammonia nitrogen in the interstitial water was between 5.24 and 10.64 mg·L-1, which was 10 times that of the overlying water, and endogenous pollution in the former was severe. The nitrate nitrogen content ranged from 0.36 to 0.79 mg·L-1. The total dissolved nitrogen content was between 5.36 and 12.02 mg·L-1, which was 5 times higher than that of the overlying water. The total dissolved phosphorus was between 0.03 and 0.3 mg·L-1. According to integrated pollution index, the degree of interstitial water pollution was much higher than that of overlying water, and the sampling points are seriously polluted. The exchange flux analysis of NH4+-N, TDN, and TDP demonstrated that the diffusion flux of NH4+-N was between 1.71 and 7.43 mg·(m2·d)-1, and the diffusion rate of endogenous ammonia nitrogen to the overlying water was fastest in Fu River, the absorbing river in Baoding. The diffusion flux of total dissolved nitrogen was lower in the Baigouyin River, and the other five sample points averaged 9.11 mg·(m2·d)-1. In summer, the dissolved oxygen was lower and the water-sediment had a larger concentration difference, which led to massive nitrogen nutrient of sediment in anaerobic conditions released to the overlying water in great quantities that caused the serious pollution. The diffusion flux of dissolved total phosphorus showed that the sediment of Pinghe River acted as a "sink" of phosphorus nutrients, and the other sampling points ranged from 0.03 to 0.16 mg·(m2·d)-1, showing the state of phosphorus nutrient released upward to the overlying water. Finally, diffusion flux indicated that endogenous pollutants are crucial sources of overlying water pollutants. In order to effectively control the water quality in the entrance area, desilting the nitrogen and phosphorus nutrient salt of sediment is urgently required.


Subject(s)
Water Pollutants, Chemical , Water Quality , China , Environmental Monitoring , Geologic Sediments , Lakes , Nitrogen/analysis , Phosphorus/analysis , Water , Water Pollutants, Chemical/analysis
10.
Huan Jing Ke Xue ; 42(8): 3730-3742, 2021 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-34309259

ABSTRACT

The sources and distribution of dissolved organic matter (DOM) in the interstitial water of Baiyangdian Lake sediments were analyzed using the ultraviolet-visible absorption spectrum (UV-vis) method and three-dimensional excitation emission matrix fluorescence spectroscopy-parallel factor analysis (EEM-PARAFAC). Results showed that the DOM concentrations and molecular weight were significantly higher in summer than in spring and autumn, based on a254 and E2/E3 values. Three protein-like substance (C1, C2, and C3) and two humic-like substances (C4, C5) were identified with the PARAFAC model. Moreover, protein-like substances accounted for the majority of DOM, reaching (63.56±16.07)%. Total DOM fluorescence intensity, the fluorescence intensity of each component, and the relative abundance exhibited significant spatial variation among the different functional zones in Baiyangdian Lake. Protein-like substances were mainly found in the breeding area, whereas humic-like substances mainly occurred in the natural area. The high BIX, FI, ß:α, and low HIX indicated that DOM in sediment interstitial water exhibited low humification and highly autochthonous characteristics. Moreover, the perfect regression equations between water quality and the fluorescent components could provide a useful reference for managers aiming to protect the ecosystem of Baiyangdian Lake.


Subject(s)
Dissolved Organic Matter , Lakes , Ecosystem , Humic Substances/analysis , Spectrometry, Fluorescence , Water , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...