Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 37(20): 3494-3500, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34021744

ABSTRACT

MOTIVATION: The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. RESULTS: We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. AVAILABILITY AND IMPLEMENTATION: RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

2.
Bioinformatics ; 37(17): 2589-2600, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-33704363

ABSTRACT

MOTIVATION: The recent discovery of numerous non-coding RNAs (long non-coding RNAs, in particular) has transformed our perception about the roles of RNAs in living organisms. Our ability to understand them, however, is hampered by our inability to solve their secondary and tertiary structures in high resolution efficiently by existing experimental techniques. Computational prediction of RNA secondary structure, on the other hand, has received much-needed improvement, recently, through deep learning of a large approximate data, followed by transfer learning with gold-standard base-pairing structures from high-resolution 3-D structures. Here, we expand this single-sequence-based learning to the use of evolutionary profiles and mutational coupling. RESULTS: The new method allows large improvement not only in canonical base-pairs (RNA secondary structures) but more so in base-pairing associated with tertiary interactions such as pseudoknots, non-canonical and lone base-pairs. In particular, it is highly accurate for those RNAs of more than 1000 homologous sequences by achieving >0.8 F1-score (harmonic mean of sensitivity and precision) for 14/16 RNAs tested. The method can also significantly improve base-pairing prediction by incorporating artificial but functional homologous sequences generated from deep mutational scanning without any modification. The fully automatic method (publicly available as server and standalone software) should provide the scientific community a new powerful tool to capture not only the secondary structure but also tertiary base-pairing information for building three-dimensional models. It also highlights the future of accurately solving the base-pairing structure by using a large number of natural and/or artificial homologous sequences. AVAILABILITY AND IMPLEMENTATION: Standalone-version of SPOT-RNA2 is available at https://github.com/jaswindersingh2/SPOT-RNA2. Direct prediction can also be made at https://sparks-lab.org/server/spot-rna2/. The datasets used in this research can also be downloaded from the GITHUB and the webserver mentioned above. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
J Comput Biol ; 27(6): 856-867, 2020 06.
Article in English | MEDLINE | ID: mdl-31638408

ABSTRACT

Noncoding RNAs are increasingly found to play a wide variety of roles in living organisms. Yet, their functional mechanisms are poorly understood because their structures are difficult to determine experimentally. As a result, developing more effective computational techniques to predict RNA structures becomes increasingly an urgent task. One key challenge in RNA structure prediction is the lack of an accurate free energy function to guide RNA folding and discriminate native and near-native structures from decoy conformations. In this study, we developed an all-atom distance-dependent knowledge-based energy function for RNA that is based on a reference state (distance-scaled finite ideal-gas reference state, DFIRE) proven successful for protein structure discrimination. Using four separate benchmarks including RNA puzzles, we found that this DFIRE-based RNA statistical energy function is able to discriminate native and near-native structures against decoys with performance comparable with or better than several existing scoring functions compared. The energy function is expected to be useful for improving the detection of RNA near-native structures.


Subject(s)
Computational Biology/methods , RNA, Untranslated/chemistry , Finite Element Analysis , Models, Molecular , RNA Folding
4.
Nucleic Acids Res ; 48(3): 1451-1465, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31872260

ABSTRACT

Despite the large number of noncoding RNAs in human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and time-consuming 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5 × 104 single-to-triple mutants is sufficient to infer 25 of 26 base pairs including non-nested, nonhelical, and noncanonical base pairs with both sensitivity and precision at 96%. Such accurate inference was further confirmed by a twister ribozyme at 100% precision with only noncanonical base pairs as false negatives. The performance was resulted from analyzing covariation-induced deviation of activity by utilizing both functional and nonfunctional variants for unsupervised classification, followed by Monte Carlo (MC) simulated annealing with mutation-derived scores. Highly accurate inference can also be obtained by combining MC with evolution/direct coupling analysis, R-scape or epistasis analysis. The results highlight the usefulness of deep mutational scanning for high-accuracy structural inference of self-cleaving ribozymes with implications for other structured RNAs that permit high-throughput functional selections.


Subject(s)
Nucleic Acid Conformation , RNA, Catalytic/genetics , RNA-Binding Proteins/genetics , RNA/genetics , Base Pairing , Genome, Human/genetics , Humans , Monte Carlo Method , Mutation/genetics , RNA/chemistry , RNA-Binding Proteins/chemistry
5.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30449682

ABSTRACT

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Subject(s)
DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Oxidoreductases Acting on CH-CH Group Donors/physiology , Pyrimidines/metabolism , Animals , Cell Line, Tumor , Cell Respiration , Dihydroorotate Dehydrogenase , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oxidative Phosphorylation , Ubiquinone/metabolism
6.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 165-175, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27836620

ABSTRACT

An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the ßα and αß modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds.


Subject(s)
Proteins/chemistry , Amino Acid Sequence , Models, Molecular , Peptides/chemistry , Protein Domains , Protein Engineering/methods , Protein Folding , Protein Structure, Secondary , Transition Temperature
7.
Nat Commun ; 5: 5330, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25345468

ABSTRACT

The de novo design of amino acid sequences to fold into desired structures is a way to reach a more thorough understanding of how amino acid sequences encode protein structures and to supply methods for protein engineering. Notwithstanding significant breakthroughs, there are noteworthy limitations in current computational protein design. To overcome them needs computational models to complement current ones and experimental tools to provide extensive feedbacks to theory. Here we develop a comprehensive statistical energy function for protein design with a new general strategy and verify that it can complement and rival current well-established models. We establish that an experimental approach can be used to efficiently assess or improve the foldability of designed proteins. We report four de novo proteins for different targets, all experimentally verified to be well-folded, solved solution structures for two being in excellent agreement with respective design targets.


Subject(s)
Protein Engineering/methods , Protein Folding , Proteins/chemistry , Proteins/metabolism , Statistics as Topic , Amino Acid Sequence , Directed Molecular Evolution , Drug Resistance, Microbial , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Solutions , Thermodynamics , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...