Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 776
Filter
1.
Vet J ; 305: 106131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763403

ABSTRACT

The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.

2.
Cancer Immunol Immunother ; 73(7): 125, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733402

ABSTRACT

BACKGROUND: Despite the success of PD-1 blockade in recurrent/metastatic nasopharyngeal carcinoma (NPC), its effect for locoregionally advanced NPC (LANPC) remains unclear. This study aimed to evaluate the benefit of adding PD-1 blockade to the current standard treatment (gemcitabine and cisplatin IC  plus cisplatin CCRT ) for LANPC patients. METHODS: From January 2020 to November 2022, 347 patients with non-metastatic high-risk LANPC (stage III-IVA, excluding T3-4N0) were included. Of the 347 patients, 268 patients were treated with standard treatment (IC-CCRT), and 79 received PD-1 blockade plus IC-CCRT (PD-1 group). For the PD-1 group, PD-1 blockade was given intravenously once every 3 weeks for up to 9 cycles (3 induction and 6 adjuvant). The primary endpoint was disease-free survival (DFS) (i.e. freedom from local/regional/distant failure or death). The propensity score matching (PSM) with the ratio of 1:2 was performed to control confounding factors. RESULTS: After PSM analysis, 150 patients receiving standard treatment and 75 patients receiving additional PD-1 blockade remained in the current analysis. After three cycles of IC, the PD-1 group had significantly higher rates of complete response (defined as disappearance of all target lesions; 24% vs. 9%; P = 0.006) and complete biological response (defined as undetectable cell-free Epstein-Barr virus DNA, cfEBV DNA; 79% vs. 65%; P = 0.046) than that in the standard group. And the incidence of grade 3-4 toxicity during IC was 47% in the PD-1 group and 41% in the standard group, with no significant difference (P = 0.396). During follow-up period, additional PD-1 blockade to standard treatment improved 3-year DFS from 84 to 95%, with marginal statistical significance (HR, 0.28; 95%CI, 0.06-1.19; P = 0.064). CONCLUSION: Additiaonl PD-1 blockade to gemcitabine and cisplatin IC and adjuvant treatment results in significant improvement in tumor regression, cfEBV DNA clearance, superior DFS, and comparable toxicity profiles in high-risk LANPC patients.


Subject(s)
Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Propensity Score , Humans , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/drug therapy , Middle Aged , Chemoradiotherapy/methods , Adult , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/drug therapy , Induction Chemotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Cisplatin/adverse effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Retrospective Studies , Gemcitabine
3.
Mater Today Bio ; 26: 101080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757056

ABSTRACT

The unique gradient structure and complex composition of osteochondral tissue pose significant challenges in defect regeneration. Restoration of tissue heterogeneity while maintaining hyaline cartilage components has been a difficulty of an osteochondral tissue graft. A novel class of multi-crosslinked polysaccharide-based three-dimensional (3D) printing inks, including decellularized natural cartilage (dNC) and nano-hydroxyapatite, was designed to create a gradient scaffold with a robust interface-binding force. Herein, we report combining a dual-nozzle cross-printing technology and a gradient crosslinking method to create the scaffolds, demonstrating stable mechanical properties and heterogeneous bilayer structures. Biofunctional assessments revealed the remarkable regenerative effects of the scaffold, manifesting three orders of magnitude of mRNA upregulation during chondrogenesis and the formation of pure hyaline cartilage. Transcriptomics of the regeneration site in vivo and scaffold cell interaction tests in vitro showed that printed porous multilayer scaffolds could form the correct tissue structure for cell migration. More importantly, polysaccharides with dNC provided a hydrophilic microenvironment. The microenvironment is crucial in osteochondral regeneration because it could guide the regenerated cartilage to ensure the hyaline phenotype.

4.
Pharmaceutics ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38794253

ABSTRACT

Pedunculoside, a triterpene saponin derived from various Ilex species, holds potential as a treatment for cardiovascular diseases. However, its clinical application is hindered by poor bioavailability, rapid elimination, and extensive intestinal metabolism to rotundic acid. To address these issues, a water-soluble inclusion complex of pedunculoside, namely, the beta-CD polymer inclusion complex of pedunculoside (pedunculoside-ßCDP), was prepared in this study, and a comparative in vitro stability and pharmacokinetic behavior study was performed between pedunculoside and pedunculoside-ßCDP. Both pedunculoside and pedunculoside-ßCDP exhibited the highest stability in simulated gastric fluid and simulated intestinal fluid but were readily metabolized when co-incubated with Bifidobacterium adolescentis and Bifidobacterium breve. An LC-MS/MS analytical method for the simultaneous determination of pedunculoside and rotundic acid in rat plasma was successfully established, validated, and applied to investigate the pharmacokinetic behavior after rats were intravenously administered with pedunculoside or pedunculoside-ßCDP. The results indicated that pedunculoside-ßCDP could significantly improve the pharmacokinetic profile of pedunculoside by increasing plasma exposure, retarding elimination, and reducing intestinal metabolism. This study enhances our understanding of pedunculoside-ßCDP's metabolic fate and pharmacokinetic properties and potentially advances its further research, development, and clinical application.

5.
Small ; : e2402583, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804883

ABSTRACT

The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.

6.
Infect Drug Resist ; 17: 1927-1935, 2024.
Article in English | MEDLINE | ID: mdl-38766679

ABSTRACT

Purpose: Polyhexanide is a safe and effective wound care antiseptic commonly used in clinics as wound rinsing solution and gel. However, the efficacy of Polyhexanide in treatment of wound infected with MRSA (methicillin-resistant Staphylococcus aureus) is unknown. The aim of this study is to assess the effectiveness of polyhexanide with povidone iodine in treating wound infected with MRSA. Patients and Methods: A prospective analysis of 62 patients with wound infections, who were admitted to our department from 2016 to 2020, was conducted in order to assess the efficacy of different treatment approaches. The patients were divided into two groups: the experimental group and the control group. In the experimental group, 30 patients underwent treatment with a combination of diluted povidone iodine and polyhexanide immersion. Conversely, in the control group, 32 patients received treatment with diluted povidone iodine along with systemic antibiotic therapy. The time required for dressing changes, bacterial clearance rates, and the Bates-Jasen wound assessment tool (BWAT) scores were utilized as indicators to evaluate the effectiveness of the treatments. Results: In our study, the findings indicated that the experimental group exhibited a lesser number of days for the bacteria culture to turn negative compared to the control group, with statistical significance (p<0.05). Furthermore, the decline in the BWAT score was significantly greater in the experimental group than in the control group (p<0.05). However, no significant differences were observed in terms of dressing times and wound coverage between the two groups (p>0.05). Conclusion: Polyhexanide combined with povidone iodine can effectively remove MRSA infection in wounds and reduce antibiotic dosages.

7.
Int J Ophthalmol ; 17(3): 435-443, 2024.
Article in English | MEDLINE | ID: mdl-38721521

ABSTRACT

AIM: To investigate the underlying mechanism of dry environment (autumn dryness) affecting the lacrimal glands in rats. METHODS: Twenty Sprague-Dawley rats were randomly divided into two groups. The rats were fed in specific pathogen free environment as the control group (n=10), and the rats fed in dry environment as the dryness group (n=10). After 24d, lacrimal glands were collected from the rats. The tissues morphology was observed by hematoxylin-eosin (HE) staining. Tandem mass tags (TMT) quantitative proteomics analysis technology was used to screen the differential expressed proteins of lacrimal glands between the two groups, then bioinformatics analysis was performed. Further, the immunohistochemical (IHC) method was used to verify the target proteins. RESULTS: In dryness group, the lacrimal glands lobule atrophied, the glandular cavities enlarged, the sparse nuclear distribution and scattered inflammatory infiltration between the acinus were observed. The proteomics exhibited that a total of 195 up-regulated and 236 down-regulated differential expressed proteins screened from the lacrimal glands of rats. It was indicated that the biological processes (BP) of differential expressed proteins mainly included cell processes and single BP. The cellular compositions of differential expressed proteins mainly located in cells, organelles. The molecular functions of differential expressed proteins mainly included binding, catalytic activity. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the differential expressed proteins mainly involved lysosome, complement and coagulation cascade, and ribosome pathway. The IHC result verified that the up-regulated expression proteins of Protein S100A9 (S100A9), Annexin A1 (Anxa1), and Clusterin (Clu) in lacrimal glands of rats in dryness group were higher than control group. CONCLUSION: The up-regulated expression proteins of S100A9, Anxa1, and Clu may be the potential mechanisms of dry eye symptoms caused by dry environment. This study provides clues of dry environments causing eye-related diseases for further studies.

8.
ACS Appl Mater Interfaces ; 16(21): 27627-27639, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38766902

ABSTRACT

Ultrawide-spectra-compatible camouflage materials are imperative for military science and national security due to the continuous advancement of various sophisticated multispectral detectors. However, ultrawide spectra camouflage still has challenges, as the spectral requirements for different bands are disparate and even conflicting. This work demonstrates an ultrawide spectra camouflage material compatible with visible (VIS, 400-800 nm), infrared (IR, 3-5 and 8-14 µm), and microwave (S-Ku bands, 2-12 GHz). The carbon nanotubes adsorbed on porous anodic alumina/aluminum flake powder (CNTs@PAA/AFP) material for ultrawide spectra camouflage is composed of bioinspired porous alumina surface layers for low visible reflection and aluminum flake powder substrate for low infrared emissivity, while the surface of the porous alumina layers is loaded with carbon nanotubes for microwave absorption. Compared with previous low-emissivity materials, CNTs@PAA/AFP has omnidirectional low reflectance (Ravg = 0.29) and high gray scale (72%) in the visible band. Further, it exhibits low emissivity (ε3-5µm = 0.15 and ε8-14µm = 0.18) in the dual infrared atmospheric window, which reduces the infrared lock-on range by 59.6%/49.8% in the mid/far-infrared band at high temperatures (573 K). The infrared camouflage performance calculated from the radiation temperature of CNTs@PAA/AFP coatings is enhanced to over 65%, which is at least 4 times greater than that of its substrate. In addition, the CNTs@PAA/AFP coating achieves high microwave absorption (RLmin = -42.46 dB) and an effective absorption bandwidth (EAB = 7.43 GHz) in the microwave band (S-Ku bands) due to the enhancement of interfacial polarization and conductive losses. This study may introduce new insight and feasible methods for multispectral manipulation, electromagnetic signal processing, and thermal management via bioinspired structural design and fabrication.

9.
Adv Mater ; : e2401838, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748700

ABSTRACT

The advent of 2D ferroelectrics, characterized by their spontaneous polarization states in layer-by-layer domains without the limitation of a finite size effect, brings enormous promise for applications in integrated optoelectronic devices. Comparing with semiconductor/insulator devices, ferroelectric devices show natural advantages such as non-volatility, low energy consumption and high response speed. Several 2D ferroelectric materials have been reported, however, the device implementation particularly for optoelectronic application remains largely hypothetical. Here, the linear electro-optic effect in 2D ferroelectrics is discovered and electrically tunable 2D ferroelectric metalens is demonstrated. The linear electric-field modulation of light is verified in 2D ferroelectric CuInP2S6. The in-plane phase retardation can be continuously tuned by a transverse DC electric field, yielding an effective electro-optic coefficient rc of 20.28 pm V-1. The CuInP2S6 crystal exhibits birefringence with the fast axis oriented along its (010) plane. The 2D ferroelectric Fresnel metalens shows efficacious focusing ability with an electrical modulation efficiency of the focusing exceeding 34%. The theoretical analysis uncovers the origin of the birefringence and unveil its ultralow light absorption across a wide wavelength range in this non-excitonic system. The van der Waals ferroelectrics enable room-temperature electrical modulation of light and offer the freedom of heterogeneous integration with silicon and another material system for highly compact and tunable photonics and metaoptics.

10.
Food Funct ; 15(8): 4109-4121, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38597225

ABSTRACT

While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1ß, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred C57BL , Riboflavin , Animals , Gastrointestinal Microbiome/drug effects , Mice , Colitis/drug therapy , Colitis/chemically induced , Dextran Sulfate/adverse effects , Riboflavin/pharmacology , Homeostasis/drug effects , Male , Disease Models, Animal , Cytokines/metabolism , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
11.
Cell Biochem Funct ; 42(3): e4013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639198

ABSTRACT

Extracellular vesicles are small lipid bilayer particles that resemble the structure of cells and range in size from 30 to 1000 nm. They transport a variety of physiologically active molecules, such as proteins, lipids, and miRNAs. Insulin resistance (IR) is a pathological disease in which insulin-responsive organs or components become less sensitive to insulin's physiological effects, resulting in decreased glucose metabolism in target organs such as the liver, muscle, and adipose tissue. Extracellular vesicles have received a lot of attention as essential intercellular communication mediators in the setting of IR. This review looks at extracellular vesicles' role in IR from three angles: signaling pathways, bioactive compounds, and miRNAs. Relevant publications are gathered to investigate the induction, inhibition, and bidirectional regulation of extracellular vesicles in IR, as well as their role in insulin-related illnesses. Furthermore, considering the critical function of extracellular vesicles in regulating IR, the study analyzes the practicality of employing extracellular vesicles for medication delivery and the promise of combination therapy for IR.


Subject(s)
Extracellular Vesicles , Insulin Resistance , MicroRNAs , Humans , Extracellular Vesicles/metabolism , Insulin/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
12.
Eur J Clin Pharmacol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605248

ABSTRACT

BACKGROUND: The efficacy and safety of direct oral anticoagulants (DOACs) in atrial fibrillation (AF) patients with impaired liver function (ILF) have not been sufficiently studied. The aim of this study was to evaluate the efficacy and safety of DOACs for stroke prevention in patients with AF and ILF. METHOD: This study was based on data from 15 centers in China, including 4,982 AF patients. The patients were divided into 2 subgroups based on their liver function status: patients with normal liver function (NLF)(n = 4213) and patients with ILF (n = 769). Logistic regression analysis was used to investigate the risk of total bleeding, major bleeding, thromboembolism, and all-cause deaths in AF patients with NLF and ILF after taking dabigatran or rivaroxaban, respectively. RESULTS: Among AF patients treated with dabigatran or rivaroxaban, patients with ILF were associated with significantly higher major bleeding, compared with NLF patients (aOR: 4.797; 95% CI: 2.224-10.256; P < 0.001). In patients with NLF, dabigatran (n = 2011) had considerably lower risk of total bleeding than rivaroxaban (n = 2202) (aOR: 1.23; 95% CI: 1.002-1.513; P = 0.049). In patients with ILF, dabigatran (n = 321) significantly favored lower risks of major bleeding compared with rivaroxaban(n = 448) (aOR: 5.484; 95% CI: 1.508-35.269; P = 0.026). CONCLUSION: After using dabigatran or rivaroxaban, patients with ILF had remarkably increased risk of major bleeding compared with patients with NLF. In AF patients with NLF, dabigatran had the distinct strength of significantly reduced risk of total bleeding compared with rivaroxaban. In patients with AF and ILF, dabigatran use was associated with lower risk for major bleeding compared with rivaroxaban.

13.
Food Res Int ; 184: 114270, 2024 May.
Article in English | MEDLINE | ID: mdl-38609246

ABSTRACT

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Subject(s)
Lycium , Polygonatum , Wine , Fermentation , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction
14.
RSC Adv ; 14(19): 13685-13693, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665506

ABSTRACT

Controlled aggregation is of great significance in designing nanodevices with high electrochemical performance. In this study, an in situ aggregation strategy with cyclodextrin polymer (CDP) was employed to prepare polyaniline (PANI)/MXene (MX) composites. MXene served as a two-dimensional structure template. Due to supramolecular interactions, CDP could be controllably modified with PANI layers, effectively preventing the self-polymerization of PANI. As a result, this integration facilitated a more uniform growth of PANI on MXene and further improved the capacitance performance of CDP-MX/PA. In a three-electrode system, the specific capacitance of MX/PA at 1 A g-1 was 460.8 F g-1, which increased to 523.8 F g-1 after CDP-induced growth. CDP-MX/PA exhibited a high energy density of 27.7 W h kg-1 at a power density of 700 W kg-1. This suggests that the synthetic strategy employed in this study holds promise in providing robust support for the preparation of high-performance energy-storage device.

16.
Talanta ; 275: 126127, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38663073

ABSTRACT

Modified electrosynthetic sample introduction technique is a reliable means of solving the problem of high sensitivity analysis of trace arsenite. This article attempts to achieve selective electroreduction of AsIII through the construction of electrode surfaces with different structures and materials from the perspective of interface reactions. Among the four transition metal modifiers, the iron modified nickel foam electrode with nano-flower structure documented higher efficiency in inducing arsenic reduction and better species selectivity. Systematic electrochemical and spectroscopic tests suggest that strong adsorption effect between Fe and AsIII, appropriate hydrogen evolution potential, and catalytic activity jointly promote efficient electroreduction of AsIII. Optimization based on electrode materials and electrolysis conditions, with high sensitivity, wide linear range (0.1-50 µg L-1), and excellent species selectivity, this paper offers an efficient and economic sample introduction method for trace AsIII/V selective atomic spectroscopy direct determination.

17.
Front Aging Neurosci ; 16: 1371873, 2024.
Article in English | MEDLINE | ID: mdl-38550747

ABSTRACT

Background: It has been shown that inflammation may be associated with cognitive impairment (CI). Diet modulates inflammation. However, there is currently a scarcity of epidemiological studies exploring the connection between the inflammatory potential of diet and CI. The objective was to investigate the correlation between the dietary inflammatory index (DII) and cognitive impairment in older adults in the United States. Methods: The present investigation utilized a cross-sectional dataset obtained from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. Dietary intake data was used to calculate DII scores, which were then used to categorize participants into quartiles. Participants' cognitive function was assessed using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). Individuals who scored in the lowest quartile on any of these tests were classified as exhibiting low cognitive performance. The association between DII and cognitive impairment was investigated by multivariate logistic regression, smooth curve fitting, and subgroup analysis. Results: A total of 947 older adults were enrolled in the study. Following the adjustment of confounding variables, DII scores exhibited a significant and positive correlation with low cognitive performance, as measured by AFT (OR 1.15, 95% CI 1.02-1.28, p = 0.02) and the DSST (OR 1.38, 95% CI 1.13-1.68, p = 0.004). Compared with the lowest quartile of DII, the highest weighted odds ratio of cognitive impairment based on AFT was observed in the fourth quartile group (OR 1.89, 95% CI 1.05-3.38, p = 0.03). Similarly, a comparable pattern was evident in DSST (OR 4.30, 95% CI 1.85-9.98, p = 0.003). Additionally, the smooth curve fitting results showed a nonlinear relationship between DII and cognitive decline evaluated by DSST (p for nonlinearity = 0.016). No interaction effects between cognitive impairment and age or gender were observed in relation to all cognitive test scores. Conclusion: This research reveals a positive link between diet with higher inflammatory potential and cognitive decline among elderly individuals in America. However, additional studies on dietary interventions are necessary to explore the cause-and-effect relationship.

18.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38490195

ABSTRACT

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Lactobacillus , Neoplasms , Humans , Lactobacillus/metabolism , Neoplasms/immunology , Neoplasms/therapy , Indoles/metabolism , Immune Checkpoint Inhibitors/therapeutic use
19.
Food Chem X ; 22: 101271, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495455

ABSTRACT

Recent studies have witnessed that chemical modification can improve the physicochemical and functional properties of plants' polysaccharides. Herein, we modified the natural Lycium barbarum seed dreg polysaccharides (LBSDPs) by sulfation (S-LBSDPs), phosphorylation (P-LBSDPs), and carboxymethylation (C-LBSDPs), and evaluated the chemical composition and antioxidant activity of their derivatives. Natural polysaccharides and their derivatives exhibited typical polysaccharide absorption peaks and characteristic group absorption peaks in FT-IR spectra along with maximum UV absorption. After modification, the total sugar and protein contents of the derivatives were decreased, whereas the uronic acid content was increased. Among the three derivatives, sulfated polysaccharides displayed excellent thermal stability. S-LBSDP and P-LBSDP showed the highest ABTS radical scavenging and reducing power while S-LBSDPs and C-LBSDPs showed better DPPH radical scavenging effect, and P-LBSDPs showed considerable Fe2+ chelating ability. Our data indicate that chemical modifications can impart a positive effect on the antioxidant potential of plant-derived polysaccharides.

20.
Food Chem X ; 22: 101270, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495459

ABSTRACT

Lycium barbarum seed dregs (LBSDs) were used for carboxymethyl modification, resulting in three degree of substitution samples (DS). Based on the substitution degree, samples were designated as low degree of substitution insoluble dietary fiber (L-IDF), medium degree of substitution insoluble dietary fiber (M-IDF) and high degree of substitution insoluble dietary fiber (H-IDF). Physicochemical and functional properties of IDFs were examined in relation to carboxymethylation degree. Infrared Fourier transform spectroscopy (FT-IR) confirmed the carboxymethyl group. According to the results, IDF, L-IDF, M-IDF, and H-IDF acquired higher enthalpy changes, and their thermal stability improved significantly. A higher DS resulted in an increase in hydration properties such as water retention capacity and water swelling capacity, as well as functional properties such as glucose adsorption capacity, nitrite ion adsorption capacity, and cholesterol adsorption capacity. As a result, carboxymethylation could effectively enhance the biological properties of L. barbarum seed dreg insoluble dietary fiber (LBSDIDF).

SELECTION OF CITATIONS
SEARCH DETAIL
...