Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.318
Filter
1.
Comput Biol Med ; 177: 108574, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38772102

ABSTRACT

The immune dysregulation associated with carbapenem-resistant Klebsiella pneumoniae (CRKP) severity was investigated through single-cell RNA sequencing (scRNA-seq) of 5 peripheral blood samples from 3 patients with moderate and severe CRKP pneumonia. Additionally, scRNA-seq datasets from two individuals with COVID-19 were included for comparative analysis. The dynamic characterization and functional properties of each immune cell type were examined by delineating the transcriptional profiles of immune cells throughout the transition from moderate to severe conditions. Overall, most immune cells in CRKP patients exhibited a robust interferon-α response and inflammatory reaction compared to healthy controls, mirroring observations in COVID-19 patients. Furthermore, cell signatures associated with NK cells, macrophages, and monocytes were identified in CRKP progression including PTPRCAP for NK cells, C1QB for macrophages, and S100A12 for both macrophages and monocytes. In summary, this study offers a comprehensive scRNA-seq resource for illustrating the dynamic immune response patterns during CRKP progression, thereby shedding light on the associations between CRKP and COVID-19.

2.
Small ; : e2403310, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773872

ABSTRACT

Understanding the structure-activity correlation is an important prerequisite for the rational design of high-efficiency electrocatalysts at the atomic level. However, the effect of coordination environment on electrocatalytic oxygen evolution reaction (OER) remains enigmatic. In this work, the regulation of proton transfer involved in water oxidation by coordination engineering based on Co3(PO4)2 and CoHPO4 is reported. The HPO4 2- anion has intermediate pKa value between Co(II)-H2O and Co(III)-H2O to be served as an appealing proton-coupled electron transfer (PCET) induction group. From theoretical calculations, the pH-dependent OER properties, deuterium kinetic isotope effects, operando electrochemical impedance spectroscopy (EIS) and Raman studies, the CoHPO4 catalyst beneficially reduces the energy barrier of proton hopping and modulates the formation energy of high-valent Co species, thereby enhancing OER activity. This work demonstrates a promising strategy that involves tuning the local coordination environment to optimize PCET steps and electrocatalytic activities for electrochemical applications. In addition, the designed system offers a motif to understand the structure-efficiency relationship from those amino-acid residue with proton buffer ability in natural photosynthesis.

3.
Blood Press Monit ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38774977

ABSTRACT

OBJECTIVE: We investigated the accuracy of the OMRON HEM-7361T automated oscillometric blood pressure (BP) monitor in the differentiation between atrial fibrillation and sinus rhythm. METHODS: An approximately equal number of patients with persistent atrial fibrillation and individuals with sinus rhythm were recruited from outpatients and inpatients of Ruijin Hospital, Shanghai, China. BP was measured three times consecutively with a 30-s interval with the OMRON HEM-7361T automatic electronic BP monitor for atrial fibrillation detection. A hand-held single lead electrocardiogram device was used for simultaneous electrocardiogram recordings. RESULTS: The device accurately identified atrial fibrillation in 100 (99.0%) of the 101 patients, with only 1 patient incorrectly classified as non-atrial fibrillation. The device correctly identified 99 (95.2%) of the 104 participants with sinus rhythm as non-atrial fibrillation, with five participants incorrectly classified as atrial fibrillation. The device had a positive predictive value of 95.2%, negative predictive value of 99.0%, and overall accuracy of 97.1%. Among the six misclassified participants, one with atrial fibrillation had a heart rate of 65 beats/min, and four of the five participants with sinus rhythm had cardiac arrhythmias (atrial or ventricular premature beat in one participants, sinus tachycardia in one participant, and both arrhythmias in one participant). CONCLUSION: The OMRON HEM-7361T BP monitor is accurate in the differentiation between atrial fibrillation and sinus rhythm. Whether the device is sufficiently accurate in the differentiation between atrial fibrillation and other cardiac arrhythmias remains under investigation.

4.
Curr Protoc ; 4(5): e1062, 2024 May.
Article in English | MEDLINE | ID: mdl-38775005

ABSTRACT

The architecture and morphology of the intestinal tissue from mice or other small animals are difficult to preserve for histological and molecular analysis due to the fragile nature of this tissue. The intestinal mucosa consists of villi and crypts lined with epithelial cells. In between the epithelial folds extends the lamina propria, a loose connective tissue that contains blood and lymph vessels, fibroblasts, and immune cells. Underneath the mucosa are two layers of contractile smooth muscle and nerves. The tissue experiences significant changes during fixation, which can impair the reliability of histologic analysis. Poor-quality histologic sections are not suitable for quantitative image-based tissue analysis. This article offers a new fixative composed of neutral buffered formalin (NBF) and acetic acid, called FA. This fixative significantly improved the histology of mouse intestinal tissue compared to traditional NBF and enabled precise, reproducible histologic molecular analyses using QuPath software. Algorithmic training of QuPath allows for automated segmentation of intestinal compartments, which can be further interrogated for cellular composition and disease-related changes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Improved preservation of mouse intestinal tissue using a formalin/acetic acid fixative Support Protocol: Quantitative tissue analysis using QuPath.


Subject(s)
Acetic Acid , Fixatives , Formaldehyde , Tissue Fixation , Animals , Mice , Tissue Fixation/methods , Intestinal Mucosa/cytology , Intestines/cytology , Intestines/pathology , Software
5.
Front Pharmacol ; 15: 1355507, 2024.
Article in English | MEDLINE | ID: mdl-38720778

ABSTRACT

Introduction: Solute carrier (SLC) transport proteins play a crucial role in maintaining cellular nutrient and metabolite homeostasis and are implicated in various human diseases, making them potential targets for therapeutic interventions. However, the study of SLCs has been limited due to the lack of suitable tools, particularly cell-based substrate uptake assays, necessary for understanding their biological functions and for drug discovery purposes. Methods: In this study, a cell-based uptake assay was developed using a stable isotope-labeled compound as the substrate for SLCs, with detection facilitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This assay aimed to address the limitations of existing assays, such as reliance on hazardous radiolabeled substrates and limited availability of fluorescent biosensors. Results: The developed assay was successfully applied to detect substrate uptakes by two specific SLCs: L-type amino acid transporter 1 (LAT1) and sodium taurocholate co-transporting polypeptide (NTCP). Importantly, the assay demonstrated comparable results to the radioactive method, indicating its reliability and accuracy. Furthermore, the assay was utilized to screen for novel inhibitors of NTCP, leading to the identification of a potential NTCP inhibitor compound. Discussion: The findings highlight the utility of the developed cell-based uptake assay as a rapid, simple, and environmentally friendly tool for investigating SLCs' biological roles and for drug discovery purposes. This assay offers a safer alternative to traditional methods and has the potential to contribute significantly to advancing our understanding of SLC function and identifying therapeutic agents targeting SLC-mediated pathways.

6.
Quant Imaging Med Surg ; 14(5): 3581-3592, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720848

ABSTRACT

Background: One in four individuals with Parkinson's disease (PD) experience cognitive impairment (CI). However, few practical models integrating clinical and neuroimaging biomarkers have been developed to address CI in PD. This study aimed to evaluate the correlation between circulating neuron-specific enolase (NSE) levels, substantia nigra hyperechogenicity (SNH), and cognitive function in PD and to develop a nomogram based on clinical and neuroimaging biomarkers for predicting CI in patients with PD. Methods: A total of 385 patients with PD who underwent transcranial sonography (TCS) from January 2021 to December 2022 at Beijing Tiantan Hospital, Capital Medical University, were recruited as the training cohort. For validation, 165 patients with PD treated from January 2023 to December 2023 were enrolled. Data for SNH, plasma NSE, and other clinical measures were collected, and cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Logistic regression analysis was employed to select potential risk factors and establish a nomogram. The receiver operating characteristic curve and calibration curve were generated to evaluate the performance of the nomogram. Results: Patients with PD exhibiting CI displayed advanced age, elevated Unified PD Rating Scale-III (UPDRS-III) score, an increased percentage of SNH, higher levels of plasma NSE and homocysteine (Hcy), a larger SNH area, and lower education levels compared to PD patients without CI. Gender [odds ratio (OR) =0.561, 95% confidence interval (CI): 0.330-0.954, P=0.03], age (OR =1.039; 95% CI: 1.011-1.066; P=0.005), education level (OR =0.892; 95% CI: 0.842-0.954; P<0.001), UPDRS-III scores (OR =1.026; 95% CI: 1.009-1.043; P=0.003), plasma NSE concentration (OR =1.562; 95% CI: 1.374-1.776; P<0.001), and SNH (OR =0.545; 95% CI: 0.330-0.902; P=0.02) were independent predictors of CI in patients with PD. A nomogram developed using these six factors yielded a moderate discrimination performance with an area under the curve (AUC) of 0.823 (95% CI 0.781-0.864; P<0.001). The calibration curve demonstrated acceptable agreement between predicted outcomes and actual values. Validation further confirmed the reliability of the nomogram, with an AUC of 0.864 (95% CI: 0.805-0.922; P<0.001). Conclusions: The level of NSE in plasma and the SNH assessed by TCS are associated with CI in patients with PD. The proposed nomogram has the potential to facilitate the detection of cognitive decline in individuals with PD.

7.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722213

ABSTRACT

In the experimental advanced superconducting tokamak (EAST), a novel ion cyclotron range of frequency (ICRF) antenna-based diagnostic system is designed to measure ion cyclotron emission (ICE) driven by high-energy ions. The diagnostic system includes ICRF antenna straps, a three-tune impedance matching system, a coaxial switching system, a direct current block, and a data acquisition and storage system. Using the coaxial switching system, the ICRF antenna can be switched from the heating mode to the coupling mode between two discharges. In the 2023 EAST experiment campaign, core ICE was observed using the ICRF antenna-based diagnostic system during neutron beam injection heating, and the obtained results agreed well with the signal detected by the previous high-frequency B-dot probe-based diagnostic system.

8.
Article in English | MEDLINE | ID: mdl-38722747

ABSTRACT

BACKGROUND: Transoral endoscopic thyroidectomy vestibular approach (TOETVA) is newly applied technology. Carbon nanoparticles (CNs) are novel lymph node tracers that have been widely used in China to help remove central lymph nodes (CLNs) and protect the parathyroid glands (PGs) in open thyroid cancer surgery. This study is to evaluate the effectiveness and safety of CNs in TOETVA. MATERIALS AND METHODS: A total of 158 patients who underwent TOETVA with unilateral papillary thyroid carcinoma were enrolled in this study from March 2019 to February 2022. The participants were divided into a CNs group (n=88) and a control group (n=70), based on whether they received a intraoperative injection of CNs or not. Meanwhile, the CNs group were additionally divided into 2 subgroups, leakage subgroup (n=26) and standard subgroup (n=62). The 2 groups and subgroups were compared in terms of patient characteristics, perioperative clinical results, and postoperative outcomes. RESULTS: All common metrics had no significant differences were found between the CNs group and the control group (P>0.05). The standard subgroup of CNs group had advantage over the control group on PGs identification (59/62 vs. 59/70 for superior PG, 56/62 vs. 52/70 for inferior PG, P<0.05). Moreover, the standard subgroup harvested more CLNs than the control group (8.97±2.96 vs. 7.47±2.93, P<0.05). More operation time was spent on the leakage subgroup of CNs group than the control group (160.00±17.61 vs. 140.00±13.32, P<0.05). Meanwhile, the leakage subgroup had disadvantage on intraoperative hemorrhage (26.15±10.80 vs. 21.21±7.09, P<0.05) and hospital durations (4.96±0.72 vs. 4.57±0.69, P<0.05). Furthermore, the leakage group identified fewer inferior PG than the control group (7/26 vs. 52/70, P<0.05). Contrary to the standard subgroup, the CLNs of the leakage subgroup was also unsatisfactory compared with the control group (4.96±1.84 vs. 7.47±2.93, P<0.05). CONCLUSIONS: The application of CNs suspension tracing technology has a definite effect in TOETVA. It can improve the thoroughness of lymph node dissection in the central region and enhance recognition of the PG. However, refined extracapsular anatomy is indispensable to prevent CN leakage. Leaked CNs will also be counterproductive to the operation.

10.
Biochem Genet ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724713

ABSTRACT

As a member of Rho GAPs family, Rho GTPase-Activating Protein 17 (ARHGAP17) regulates cytoskeletal recombination, cell polarity, cell proliferation and cell migration. ARHGAP17 is identified as a tumor suppressor in numerous cancer types. Current study intends to examine ARHGAP17 expression and its possible influence on the progression of hepatocellular carcinoma (HCC). ARHGAP17 expression in HCC cells was verified by RT-PCR and western blot. The proliferation and invasion of HCC cells were evaluated by CCK8 assay and transwell assay, respectively. The mRNA expression of ARHGAP17, PCNA, E-cadherin, N-cadherin, ß-catenin, GSK-3ß, Axin1, and APC were detected by RT-PCR. The protein expression of ARHGAP17, PCNA, E-cadherin, N-cadherin, ß-catenin, p-ß-catenin, GSK-3ß, p-GSK-3ß, Axin1, and APC were detected by western blot. ARHGAP17 staining was evaluated by immunohistochemistry and immunofluorescence. ARHGAP17 expression decreased significantly in HCC tumors and HCC cells after EMT. In response to overexpression of ARHGAP17, the capacities of HCC cell proliferation and invasion were reduced significantly, which were also confirmed by tumorigenesis experiments in vivo. With overexpression of ARHGAP17 in HCC cells, the p-GSK3ß/GSK3ß decreased, while the p-ß-catenin/ß-catenin, Axin1 and APC increased. In conclusion, ARHGAP17 inhibits HCC progression by inactivating the Wnt/ß-catenin signaling pathway.

11.
J Gynecol Oncol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38725236

ABSTRACT

OBJECTIVE: As an indolent malignant tumor, the long-term management of low-grade endometrial stromal sarcoma (LGESS) patients required awareness, especially the management of recurrences. Unfortunately, few studies focused on the treatment of recurrent LGESS. Our study aimed to investigate the prognostic factors and the value of recurrent surgery on recurrent LGESS. METHODS: This retrospective study consecutively recruited patients with pathologically diagnosed recurrent LGESS at our center from April 1, 2004 to April 1, 2020. RESULTS: After a median follow-up of 137.0 months (95% confidence interval=85.4-188.6), the 5-year cumulative survival rate of the cohort of 38 patients with recurrent LGESS was 71.1%. The median overall survival (OS) and post-recurrence survival (PRS) was 156 and 89.0 months. Survival analysis showed that patients with younger age, positive estrogen receptor (ER) and optimal abdominopelvic debulking in the first recurrent surgery had better prognosis (p<0.05). Multivariate analysis showed that optimal abdominopelvic debulking in the first recurrent surgery was the only independent prognostic factor for OS and PRS (OS=216.0/35.0 months, hazard ratio [HR]=5.319, p=0.034; PRS=not reached/4.0 months, HR=10.900, p=0.006). There was no significant difference in OS and PRS between patients recurred only once and those recurred at least twice (p>0.05). CONCLUSIONS: The prognosis of recurrent LGESS was favorable. Optimal debulking of no residual tumor in abdominal and pelvic cavity should be the first choice of treatment for recurrent patients, while preservation of ovary or fertility should not be recommended.

12.
Front Neurol ; 15: 1387021, 2024.
Article in English | MEDLINE | ID: mdl-38751882

ABSTRACT

Objectives: To explore the effectiveness of diffusion quantitative parameters derived from advanced diffusion models in detecting brain microstructural changes in patients with chronic kidney disease (CKD). Methods: The study comprised 44 CKD patients (eGFR<59 mL/min/1.73 m2) and 35 age-and sex-matched healthy controls. All patients underwent diffusion spectrum imaging (DSI) and conventional magnetic resonance imaging. Reconstructed to obtain diffusion MRI models, including diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) and Mean Apparent Propagator (MAP)-MRI, were processed to obtain multi-parameter maps. The Tract-Based Spatial Statistics (TBSS) analysis was utilized for detecting microstructural differences and Pearson correlation analysis assessed the relationship between renal metabolism markers and diffusion parameters in the brain regions of CKD patients. Receiver operating characteristic (ROC) curve analysis assessed the diagnostic performance of diffusion models, with AUC comparisons made using DeLong's method. Results: Significant differences were noted in DTI, NODDI, and MAP-MRI parameters between CKD patients and controls (p < 0.05). DTI indicated a decrease in Fractional Anisotropy(FA) and an increase in Mean and Radial Diffusivity (MD and RD) in CKD patients. NODDI indicated decreased Intracellular and increased Extracellular Volume Fractions (ICVF and ECVF). MAP-MRI identified extensive microstructural changes, with elevated Mean Squared Displacement (MSD) and Q-space Inverse Variance (QIV) values, and reduced Non-Gaussianity (NG), Axial Non-Gaussianity (NGAx), Radial Non-Gaussianity (NGRad), Return-to-Origin Probability (RTOP), Return-to-Axis Probability (RTAP), and Return-to-Plane Probability (RTPP). There was a moderate correlation between serum uric acid (SUA) and diffusion parameters in six brain regions (p < 0.05). ROC analysis showed the AUC values of DTI_FA ranged from 0.70 to 0.793. MAP_NGAx in the Retrolenticular part of the internal capsule R reported a high AUC value of 0.843 (p < 0.05), which was not significantly different from other diffusion parameters (p > 0.05). Conclusion: The advanced diffusion models (DTI, NODDI, and MAP-MRI) are promising for detecting brain microstructural changes in CKD patients, offering significant insights into CKD-affected brain areas.

13.
Front Med (Lausanne) ; 11: 1293940, 2024.
Article in English | MEDLINE | ID: mdl-38751979

ABSTRACT

Purpose: To evaluate the operability and safety of bronchoscopic domestic one-way endobronchial valves (EBV) on animals. Methods: Nine pigs were randomly assigned (2:1) to receive domestic one-way EBV (the experimental group, n = 6) and Zephyr® EBV (the control group, n = 3). Routine blood tests, arterial blood gases, and CT scans of the lungs were performed 1 day pre-procedure in addition to 1 week and 1 month post-procedure to assess changes in blood markers and lung volumes. At 1 month post-procedure, the animals were sacrificed, followed by removal of all valves via bronchoscopy. Pathological examinations of critical organs were subsequently performed. Results: A total of 15 valves were placed in the experimental group and 6 valves were placed in the control group, without serious complications. Routine blood tests and arterial blood gas examinations at 1 day pre-procedure, 1 week post-procedure, and 1 month post-procedure did not differ significantly in both groups. No EBV displacement was noted under bronchoscopy, and the valve was smoothly removable by bronchoscope at 1 month post-procedure. At 1 week post-procedure, varying degrees of target lung lobe volume reduction were observed on lung CT in both groups. Lung volume reduction was achieved at 1 month post-procedure in both groups, without significant statistical difference. Although 3 cases in the experimental group and 1 case in the control group developed varying degrees of pneumonia, the inflammatory response did not increase over time during the experimental period. Pathological examination revealed no significant abnormal changes in the critical organs for both groups. Conclusion: Our results demonstrate that domestic EBV is safe and reliable for endobronchial application in general-grade laboratory white pigs. The safety of domestic EBV is similar to that of Zephyr® EBV, with good ease of use and operability. This kind of domestic EBV can meet the safety evaluation requirements for animal testing.

14.
Proc Natl Acad Sci U S A ; 121(21): e2322270121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753515

ABSTRACT

The kagome metal CsV[Formula: see text]Sb[Formula: see text] is an ideal platform to study the interplay between topology and electron correlation. To understand the fermiology of CsV[Formula: see text]Sb[Formula: see text], intensive quantum oscillation (QO) studies at ambient pressure have been conducted. However, due to the Fermi surface reconstruction by the complicated charge density wave (CDW) order, the QO spectrum is exceedingly complex, hindering a complete understanding of the fermiology. Here, we directly map the Fermi surface of the pristine CsV[Formula: see text]Sb[Formula: see text] by measuring Shubnikov-de Haas QOs up to 29 T under pressure, where the CDW order is completely suppressed. The QO spectrum of the pristine CsV[Formula: see text]Sb[Formula: see text] is significantly simpler than the one in the CDW phase, and the detected oscillation frequencies agree well with our density functional theory calculations. In particular, a frequency as large as 8,200 T is detected. Pressure-dependent QO studies further reveal a weak but noticeable enhancement of the quasiparticle effective masses on approaching the critical pressure where the CDW order disappears, hinting at the presence of quantum fluctuations. Our high-pressure QO results reveal the large, unreconstructed Fermi surface of CsV[Formula: see text]Sb[Formula: see text], paving the way to understanding the parent state of this intriguing metal in which the electrons can be organized into different ordered states.

15.
Plant Cell Environ ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757792

ABSTRACT

Various reporter genes have been developed to study gene expression pattern and gene regulation. The RUBY reporter gene was recently developed and widely used, because of its visible and noninvasive advantages. However, quantitative analysis of RUBY gene expression levels was lacking. In this study, we introduce a novel betalain quantification method in combination with the tobacco transient expression system. The betalain produced in tobacco leaves was extracted and purified, and its concentration was quantitatively measured. We successfully applied this approach in studying the transcriptional regulation of ARC5 gene by transcription factors CPD25 and CPD45. Furthermore, with this method, we showed that the gene expression of RCA and Rbcs1A gene were regulated by light, transcription factors HY5 and PIFs through G-box and I-box elements. The development of this betalain quantification approach with the tobacco transient expression system offers a cost-effective and intuitive strategy for studying the regulatory mechanism of gene expression.

16.
Int Microbiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758414

ABSTRACT

BACKGROUND: The contribution of gut microbiota to human high-altitude adaptation remains inadequately understood. METHODS: Here a comparative analysis of gut microbiota was conducted between healthy individuals living at sea level and high altitude using deep whole-metagenome shotgun sequencing, to investigate the adaptive mechanisms of gut microbiota in plateau inhabitants. RESULTS: The results showed the gut bacteriomes in high-altitude individuals exhibited greater within-sample diversity and significant alterations in both bacterial compositional and functional profiles when compared to those of sea-level individuals, indicating the potential selection of unique bacteria associated with high-altitude environments. The strain-level investigation revealed enrichment of Collinsella aerofaciens and Akkermansia muciniphila in high-altitude populations. The characteristics of gut virome and gut mycobiome were also investigated. Compared to sea-level subjects, high-altitude subjects exhibited a greater diversity in their gut virome, with an increased number of viral operational taxonomic units (vOTUs) and unique annotated genes. Finally, correlation analyses revealed 819 significant correlations between 42 bacterial species and 375 vOTUs, while no significant correlations were observed between bacteria and fungi or between fungi and viruses. CONCLUSION: The findings have significantly contributed to an enhanced comprehension of the mechanisms underlying the high-altitude geographic adaptation of the human gut microbiota.

17.
Am J Nucl Med Mol Imaging ; 14(2): 82-86, 2024.
Article in English | MEDLINE | ID: mdl-38737642

ABSTRACT

The strategic installation of a [18F]fluorine atom at the specific position of the lead molecule is a never-ending challenge for radiochemists in their endeavour to develop novel positron emission tomography (PET) imaging applications. Although the radiosynthesis of [18F]CF2H-containing molecules has been explored in the past decade, more methods need to be explored for various well-functionalized compounds. Recently, two novel strategies of radiodifluoromethylation were reported, namely the utilization of [18F]difluorocarbene building block and frustrated Lewis pair-mediated C-18F bond formation, respectively. These methods provide an efficient radiofunctionalization of complex CF2H-containing molecules for drug discovery and PET ligand development.

18.
Heliyon ; 10(9): e29597, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707399

ABSTRACT

A diagnosis based on multiple nuclear medicine imaging (NMI) was more comprehensive in approaching the nature of pathological changes. In this research, a method to realize triple NMIs within one day was developed based on the reasonable arrangements of 68Ga-RGD PET/CT specialized on neovascularization, 99mTc-HL-91 SPECT/CT specialized on hypoxia and 18F-FDG PET/CT specialized on tumor metabolism. Feasibility was verified in evaluating the therapeutic effects of transarterial embolization (TAE) performed on rabbit models with VX2 tumor. Radiation dosimetry was carried out to record the radiation exposure from multiple injections of radiopharmaceuticals. In results, the one-day examination of triple NMIs manifested the diversity of the postoperative histological changes, including the local neovascularization induced by embolization, hypoxic state of embolized tissues, and suppression of tumor metabolism. More importantly, radiation dosage from radiopharmaceuticals was limited below 5.70 ± 0.90 mSv. In conclusion, the strong timeliness and complementarity of one-day examination of triple nuclear medicine imaging made it clinically operative and worthy of popularizing. There was flexibility in combining distinct NMIs according to the clinical demands, so as to provide comprehensive information for diagnosis.

19.
Colloids Surf B Biointerfaces ; 239: 113961, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38749169

ABSTRACT

Breast cancer, the predominant malignancy afflicting women, continues to pose formidable challenges despite advancements in therapeutic interventions. This study elucidates the potential of phototherapy, comprising both photothermal and photodynamic therapy (PTT/PDT), as a novel and promising modality. To achieve this goal, we devised liposomes coated with macrophage cell membranes including macrophage-associated membrane proteins, which have demonstrated promise in biomimetic delivery systems for targeting tumors while preserving their inherent tumor-homing capabilities. This integrated biomimetic delivery system comprised IR780, NONOate, and perfluorocarbon. This strategic encapsulation aims to achieve a synergistic combination of photodynamic therapy (PDT) and reactive nitrogen species (RNS) therapy. Under near-infrared laser irradiation at 808 nm, IR780 demonstrates its ability to prolifically generate reactive oxygen species (ROS), including superoxide anion (O2•-), singlet oxygen, and hydroxyl radical (·OH). Simultaneously, NONOate releases nitric oxide (NO) gas upon the same laser irradiation, thereby engaging with IR780-induced ROS to facilitate the formation of peroxynitrite anion (ONOO-), ultimately inducing programmed cell death in cancer cells. Additionally, the perfluorocarbon component of our delivery system exhibits a notable affinity for oxygen and demonstrates efficient oxygen-carrying capabilities. Our results demonstrate that IR780-NO-PFH-Lip@M significantly enhances breast cancer cell toxicity, reducing proliferation and in vivo tumor growth through simultaneous heat, ROS, and RNS production. This study contributes valuable insights to the ongoing discourse on innovative strategies for advancing cancer therapeutics.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124453, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38749201

ABSTRACT

In this study, fluorescent carbon dots were synthesized for the first time using ammonium citrate and glutamic acid as precursors via a one-pot hydrothermal method. The synthesized carbon dots emit blue fluorescence at 436 nm (excited at 320 nm) and demonstrate excellent photobleaching resistance and fluorescence stability in high salt environments. Within the range of 1-25 µM, the fluorescence of CDs gradually increases with the increasing concentration of Cd2+, reaching a limit of detection as low as 13 nM. This phenomenon could be ascribed to the chelation-enhanced fluorescence, a result of Cd2+ forming complexes with the abundant surface functional groups such as CN-, -COOH, -OH, -NH2 in CDs. Furthermore, this turn-on fluorescent probe has been successfully used for the detection of Cd2+ in tap water and lake water, providing an efficient and sensitive method for the analysis of environmental metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...