Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 32(18): 5071-5088, 2023 09.
Article in English | MEDLINE | ID: mdl-37584177

ABSTRACT

Acquisition of new genes often results in the emergence of novel functions and is a key step in lineage-specific adaptation. As a group of sessile crustaceans, barnacles establish permanent attachment through initial cement secretion at the larval phase followed by continuous cement secretion in juveniles and adults. However, the origins and evolution of barnacle larval and adult cement proteins remain poorly understood. By performing microdissection of larval cement glands, transcriptome and shotgun proteomics and immunohistochemistry validation, we identified 30 larval and 27 adult cement proteins of the epibiotic turtle barnacle Chelonibia testudinaria, of which the majority are stage- and barnacle-specific. While only two proteins, SIPC and CP100K, were expressed in both larvae and adults, detection of protease inhibitors and the cross-linking enzyme lysyl oxidase paralogs in larvae and adult cement. Other barnacle-specific cement proteins such as CP100k and CP52k likely share a common origin dating back at least to the divergence of Rhizocephala and Thoracica. Different CP52k paralogues could be detected in larval and adult cement, suggesting stage-specific cement proteins may arise from duplication followed by changes in expression timing of the duplicates. Interestingly, the biochemical properties of larval- and adult-specific CP52k paralogues exhibited remarkable differences. We conclude that barnacle larval and adult cement systems evolved independently, and both emerged from co-option of existing genes and de novo formation, duplication and functional divergence of lineage-specific cement protein genes. Our findings provide important insights into the evolutionary mechanisms of bioadhesives in sessile marine invertebrates.


Subject(s)
Thoracica , Animals , Thoracica/genetics , Thoracica/metabolism , Proteins/genetics , Larva/genetics , Larva/metabolism , Transcriptome/genetics
2.
Plants (Basel) ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36987061

ABSTRACT

In the current work, the effects of steam and boiling water blanching on the drying characteristics, water distribution, microstructure, and contents of bioactive substances of Gastrodia elata (G. elata) were explored. Results showed that the degree of steaming and blanching was related to the core temperature of G. elata. The steaming and blanching pretreatment increased the drying time of the samples by more than 50%. The low-field nuclear magnetic resonance (LF-NMR) of treated samples showed that the relaxation time corresponded to water molecule states (bound, immobilized, and free) and G. elata became shorter, which indicated a reduction in free moisture and increased resistance of water diffusion in the solid structure during drying. Hydrolysis of polysaccharides and gelatinization of starch granules was observed in the microstructure of treated samples, which was consistent with changes in water status and drying rates. Steaming and blanching increased gastrodin and crude polysaccharide contents and decreased p-hydroxybenzyl alcohol content. These findings will contribute to a better understanding of the effect of steaming and blanching on the drying behavior and quality attributes of G. elata.

3.
Article in English | MEDLINE | ID: mdl-35100102

ABSTRACT

Two novel Gram-stain-negative, facultative anaerobic, non-flagellated, rod-shaped bacterial strains, designated MT13T and MT32, were isolated from sediment samples collected from the Mariana Trench at a depth of 8300 m. The two strains grew at -2-30 °C (optimum, 25 °C), at pH 5.5-10.0 (optimum, pH 7.5-8.0) and with 0-15 % (w/v) NaCl (optimum, 3-6 %). They did not reduce nitrate to nitrite nor hydrolyse Tweens 40 and 80, aesculin, casein, starch and DNA. The genomic G+C contents of draft genomes of strain MT13T and MT32 were 52.2 and 54.1 m ol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains MT13T and MT32 were affiliated with the genus Halomonas, with the highest similarity to the type strain of Halomonas olivaria. The values of average nucleotide identity and in silico DNA-DNA hybridization between strain MT13T and MT32, and between strain MT13T and five closely related type strains of Halomonas species indicated that strains MT13T and MT32 belonged to the same species, but represented a novel species in the genus of Halomonas. The major cellular fatty acids of strains MT13T and MT32 were C16 : 0, summed feature 3(C16 : 1 ω7c/ω6c) and summed feature 8 (C18 : 1 ω7c/ω6c). Major polar lipids of strains MT13T and MT32 included phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Ubiquinone-9 was the predominant respiratory quinone. Based on data from the present polyphasic study, strains MT13T and MT32 represent a novel species of the genus Halomonas, for which the name Halomonas profundi sp. nov. is proposed. The type strain is MT13T (=MCCC 1K06389T=KCTC 82923T).


Subject(s)
Geologic Sediments/microbiology , Halomonas , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Halomonas/classification , Halomonas/isolation & purification , Nucleic Acid Hybridization , Pacific Ocean , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
4.
Front Microbiol ; 12: 735793, 2021.
Article in English | MEDLINE | ID: mdl-34630359

ABSTRACT

Dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) are widespread in marine environment, and are important participants in the global sulfur cycle. Microbiol oxidation of DMS to DMSO represents a major sink of DMS in marine surface waters. The SAR11 clade and the marine Roseobacter clade (MRC) are the most abundant heterotrophic bacteria in the ocean surface seawater. It has been reported that trimethylamine monooxygenase (Tmm, EC 1.14.13.148) from both MRC and SAR11 bacteria likely oxidizes DMS to generate DMSO. However, the structural basis of DMS oxidation has not been explained. Here, we characterized a Tmm homolog from the SAR11 bacterium Pelagibacter sp. HTCC7211 (Tmm7211). Tmm7211 exhibits DMS oxidation activity in vitro. We further solved the crystal structures of Tmm7211 and Tmm7211 soaked with DMS, and proposed the catalytic mechanism of Tmm7211, which comprises a reductive half-reaction and an oxidative half-reaction. FAD and NADPH molecules are essential for the catalysis of Tmm7211. In the reductive half-reaction, FAD is reduced by NADPH. In the oxidative half-reaction, the reduced FAD reacts with O2 to form the C4a-(hydro)peroxyflavin. The binding of DMS may repel the nicotinamide ring of NADP+, and make NADP+ generate a conformational change, shutting off the substrate entrance and exposing the active C4a-(hydro)peroxyflavin to DMS to complete the oxidation of DMS. The proposed catalytic mechanism of Tmm7211 may be widely adopted by MRC and SAR11 bacteria. This study provides important insight into the conversion of DMS into DMSO in marine bacteria, leading to a better understanding of the global sulfur cycle.

5.
Environ Microbiol ; 23(2): 1162-1173, 2021 02.
Article in English | MEDLINE | ID: mdl-33185972

ABSTRACT

Most marine copiotrophic bacteria can produce extracellular enzymes to degrade biopolymers into bio-available smaller solutes, while oligotrophic bacteria usually cannot. Bacterial extracellular enzymes and enzymatic products can be a common resource that could be utilized by both copiotrophs and oligotrophs; when present, oligotrophs may outcompete the enzyme-producing copiotrophs. However, copiotrophs and oligotrophs consistently coexist in the ocean. How they maintain coexistence has still not been experimentally studied. In this study, the interaction and coexistence of a copiotroph and an oligotroph, isolated from the same surface seawater sample and utilizing the same proteinaceous substrate, were experimentally investigated. The copiotroph could secrete extracellular proteases to degrade and then utilize the proteinaceous substrate. The oligotroph was unable to utilize the proteinaceous substrate by itself, but could grow by using the hydrolysate amino acids. The copiotroph outcompeted the oligotroph by adsorbing the amino acids quickly and having a higher growth rate in the rich medium. The oligotroph survived by adapting to low concentration of nutrients. The copiotroph and oligotroph were able to maintain long-term (up to 142 days) coexistence in the laboratory. This study indicates that differences in the utilization of different concentrations of nutrients can drive the coexistence of marine copiotrophs and oligotrophs.


Subject(s)
Bacteria/growth & development , Microbial Interactions , Seawater/microbiology , Amino Acids/analysis , Amino Acids/metabolism , Bacteria/metabolism , Culture Media/chemistry , Culture Media/metabolism , Nutrients/analysis , Nutrients/metabolism , Seawater/chemistry
6.
Molecules ; 24(19)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597294

ABSTRACT

Doxorubicin (DOX) is an effective anti-tumor drug widely used in clinics. Hernandezine (HER), isolated from a Chinese medicinal herb, has a selective inhibitory effect on DOX multidrug resistance, making DOX more effective in treating cancer. The aim of this study was to investigate the effect of the interaction of HER and DOX on pharmacokinetics. Male Sparague-Dawley rats were randomly divided into three groups: a single DOX group, a single HER group, and a combination group. Plasma concentrations of DOX and HER were determined by the LC-MS/MS method at specified time points after administration, and the main pharmacokinetic parameters were estimated. The results showed that there were significant differences in the Cmax and AUC0-∞ of DOX in the single drug group and combined drug group, indicating that HER could improve the absorption of DOX. However, DOX in combination, in turn, reduced the free drug concentration of HER, possibly because DOX enhanced the HER drug-protein binding effect. The results could be used as clinical guidance for DOX and HER to avoid adverse reactions.


Subject(s)
Benzylisoquinolines/pharmacokinetics , Chromatography, Liquid , Doxorubicin/pharmacokinetics , Drug Interactions , Drugs, Chinese Herbal/pharmacokinetics , Tandem Mass Spectrometry , Limit of Detection , Molecular Structure
7.
Nat Chem ; 11(10): 880-889, 2019 10.
Article in English | MEDLINE | ID: mdl-31527851

ABSTRACT

Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention.


Subject(s)
Copper/pharmacology , DNA Breaks, Double-Stranded/drug effects , Macrocyclic Compounds/pharmacology , Peptides/pharmacology , Polyketides/pharmacology , Copper/chemistry , Macrocyclic Compounds/chemistry , Molecular Conformation , Oxidative Stress/drug effects , Peptides/chemistry , Polyketides/chemistry
8.
Nat Commun ; 9(1): 3273, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115920

ABSTRACT

The worldwide prevalence of infections caused by antibiotic-resistant Gram-negative bacteria poses a serious threat to public health due to the limited therapeutic alternatives. Cationic peptides represent a large family of antibiotics and have attracted interest due to their diverse chemical structures and potential for combating drug-resistant Gram-negative pathogens. Here, we analyze 7395 bacterial genomes to investigate their capacity for biosynthesis of cationic nonribosomal peptides with activity against Gram-negative bacteria. Applying this approach, we identify two novel compounds (brevicidine and laterocidine) showing bactericidal activities against antibiotic-resistant Gram-negative pathogens, such as Pseudomonas aeruginosa and colistin-resistant Escherichia coli, and an apparently low risk of resistance. The two peptides show efficacy against E. coli in a mouse thigh infection model. These findings may contribute to the discovery and development of Gram-negative antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Genome, Bacterial , Gram-Negative Bacteria/drug effects , Ribosomes/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , HeLa Cells , Humans , Mice , Microbial Sensitivity Tests
9.
Nat Chem Biol ; 14(9): 901, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29515244

ABSTRACT

In the version of this article originally published, the links and files for the Supplementary Information, including Supplementary Tables 1-5, Supplementary Figures 1-25, Supplementary Note, Supplementary Datasets 1-4 and the Life Sciences Reporting Summary, were missing in the HTML. The error has been corrected in the HTML version of this article.

10.
Nat Chem Biol ; 14(4): 381-387, 2018 04.
Article in English | MEDLINE | ID: mdl-29483640

ABSTRACT

Nonribosomal peptide antibiotics, including polymyxin, vancomycin, and teixobactin, most of which contain D-amino acids, are highly effective against multidrug-resistant bacteria. However, overusing antibiotics while ignoring the risk of resistance arising has inexorably led to widespread emergence of resistant bacteria. Therefore, elucidation of the emerging mechanisms of resistance to nonribosomal peptide antibiotics is critical to their implementation. Here we describe a networking-associated genome-mining platform for linking biosynthetic building blocks to resistance components associated with biosynthetic gene clusters. By applying this approach to 5,585 complete bacterial genomes spanning the entire domain of bacteria, with subsequent chemical and enzymatic analyses, we demonstrate a mechanism of resistance toward nonribosomal peptide antibiotics that is based on hydrolytic cleavage by D-stereospecific peptidases. Our finding reveals both the widespread distribution and broad-spectrum resistance potential of D-stereospecific peptidases, providing a potential early indicator of antibiotic resistance to nonribosomal peptide antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Peptide Hydrolases/chemistry , Peptides/chemistry , Antimicrobial Cationic Peptides , Bacteria/genetics , Computational Biology , Drug Resistance, Bacterial , Genome, Bacterial , Hydrolysis , Kinetics , Multigene Family , Mutation , Protein Binding , Ribosomes/chemistry , Stereoisomerism
11.
Nat Chem Biol ; 12(10): 773-5, 2016 10.
Article in English | MEDLINE | ID: mdl-27547923

ABSTRACT

Colibactin is an as-yet-uncharacterized genotoxic secondary metabolite produced by human gut bacteria. Here we report the biosynthetic discovery of two new precolibactin molecules from Escherichia coli, including precolibactin-886, which uniquely incorporates the highly sought genotoxicity-associated aminomalonate building block into its unprecedented macrocyclic structure. This work provides new insights into the biosynthetic logic and mode of action of this colorectal-cancer-linked microbial chemical.


Subject(s)
Malonates/metabolism , Peptides/metabolism , Polyketides/metabolism , Escherichia coli/metabolism , Humans , Malonates/chemistry , Molecular Conformation , Peptides/chemistry , Polyketides/chemistry
12.
Int J Oncol ; 49(1): 294-304, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27211281

ABSTRACT

The development of multidrug resistance (MDR) is the major obstacle in the chemotherapy of breast cancer, and it restricts the application of antitumor drugs in the clinic. Therefore it is urgent to search for ways to reverse MDR and restore sensitivity to chemotherapeutics in breast carcinoma. Currently, histone deacetylase inhibitors (HDACIs) offer a promising strategy for tumor therapy as the effective anticancer drugs. Based on the potential resistant target of nucleophosmin (NPM), the purpose of this study was to explore the reversal effect of a new synthetic histone deacetylase inhibitor, FA17, on MDR in methotrexate-resistant breast cancer cells (MCF-7/MTX) and xenograft tumors. It was shown that the abnormal expression of NPM induced MDR and inhibited downstream mitochondrial apoptotic pathway by activating PI3K/Akt signaling pathway in MCF-7/MTX cells. The reversal effect and molecular mechanism of FA17 were investigated both in vitro and in vivo. We found that FA17 could significantly reverse resistance and sensitize MCF-7/MTX cells to methotrexate. FA17 obviously enhanced resistant cell apoptosis, inhibited expressions of NPM and efflux transporters. Additionally, FA17 could reverse MDR via inactivating PI3K/Akt pathway and accelerating mitochondrial apoptotic pathway both in MCF-7/MTX cells and in xenograft tumors. Taken together, the novel histone deacetylase inhibitor could effectively reverse drug resistance due to suppressing the activity of NPM and drug efflux pumps by PI3K/Akt and mitochondrial apoptotic pathway. The above not only indicated the potential applied value of FA17 in reversing MDR and enhancing the sensitivity of chemotherapy, but also confirmed the role of NPM in the development of MDR in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Histone Deacetylase Inhibitors/administration & dosage , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mice , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
Environ Microbiol ; 18(8): 2481-94, 2016 09.
Article in English | MEDLINE | ID: mdl-26637128

ABSTRACT

Glass sponge (Hexactinellida, Porifera) is a special lineage because of its unique tissue organization and skeleton material. Structure and physiology of glass sponge have been extensively studied. However, our knowledge of the glass sponge-associated microbial community and of the interaction with the host is rather limited. Here, we performed genomic studies on the microbial community in the glass sponge Lophophysema eversa in seamount. The microbial community was dominated by an ammonia-oxidizing archaeum (AOA), a nitrite-oxidizing bacterium (NOB) and a sulfur-oxidizing bacterium (SOB), all of which were autotrophs. Genomic analysis on the AOA, NOB and SOB in the sponge revealed specific functional features of sponge-associated microorganisms in comparison with the closely related free-living relatives, including chemotaxis, phage defence, vitamin biosynthesis and nutrient uptake among others, which are related to ecological functions. The three autotrophs play essential roles in the cycles of carbon, nitrogen and sulfur in the microenvironment inside the sponge body, and they are considered to play symbiotic roles in the host as scavengers of toxic ammonia, nitrite and sulfide. Our study extends knowledge regarding the metabolism and the evolution of chemolithotrophs inside the invertebrate body.


Subject(s)
Archaea/isolation & purification , Carbon/metabolism , Gammaproteobacteria/isolation & purification , Nitrogen/metabolism , Porifera/microbiology , Sulfur/metabolism , Ammonia/metabolism , Animals , Archaea/classification , Archaea/genetics , Autotrophic Processes/physiology , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Genomics , Microbiota/genetics , Oxidation-Reduction , Phylogeny , Symbiosis
14.
Genome Biol Evol ; 7(8): 2310-20, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26220935

ABSTRACT

Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese's complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes.


Subject(s)
Gene Transfer, Horizontal , Genes, Archaeal , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Chlamydia/genetics , Escherichia coli/genetics , Gene Dosage , Genetic Variation , Genome, Archaeal , Genome, Bacterial , Mutation , Phylogeny , Thermoanaerobacter/genetics
15.
mBio ; 5(6): e01980, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25370493

ABSTRACT

UNLABELLED: Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE: This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper treatment on the community structure and functional gene composition, revealing that copper treatment had a selective effect on the functions of the bacterial community in the sponge. These findings suggest that copper pollution has an ecological impact on the sponge symbiont. The analysis showed that the untreated sponges hosted symbiotic autotrophic bacteria as dominant species, and the high-concentration copper treatment enriched for a heterotrophic bacterial community with enrichment for genes important for bacterial motility, supplementary cellular components, signaling and regulation, and virulence. Microscopic observation showed obvious bacterial aggregation and a reduction of sponge cell numbers in treated sponges, which suggested the formation of aggregates to reduce the copper concentration. The enrichment for functions of directional bacterial movement and supplementary cellular components and the formation of bacterial aggregates and phage enrichment are novel findings in sponge studies.


Subject(s)
Bacteria/classification , Bacteria/drug effects , Bacteriophages/classification , Biota/drug effects , Copper/toxicity , Haliclona/microbiology , Animals , Bacteria/genetics , Bacteriophages/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Sci Rep ; 4: 6647, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25323200

ABSTRACT

Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.


Subject(s)
Biofilms , Marine Biology , RNA, Ribosomal, 16S/genetics , Water Microbiology , Indian Ocean , Phylogeny , Substrate Specificity
17.
Int J Mol Sci ; 15(9): 15259-71, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25170811

ABSTRACT

Adenosine (Ado) is an important cardioprotective agent. Since endogenous Ado levels are affected by the enzyme Ado deaminase (ADA), polymorphisms within the ADA gene may exert some effect on chronic heart failure (CHF). This study applied a case-control investigation to 300 northern Chinese Han CHF patients and 400 ethnicity-matched healthy controls in which nine single-nucleotide polymorphisms (SNPs) of ADA were genotyped and association analyses were performed. Odds ratios (ORs) with 95% confidence intervals (CI) were used to assess the association. Overall, rs452159 polymorphism in ADA gene was significantly associated with susceptibility to CHF under the dominant model (p = 0.013, OR = 1.537, 95% CI = 1.10-2.16), after adjustment for age, sex, and traditional cardiovascular risk factors. No difference in genotype distribution and allele frequency for the rs452159 according to the functional New York Heart Association class was found. Furthermore, the values of left ventricular ejection fraction, left-ventricle end-diastolic diameter or left-ventricle end-systolic diameter did not differ significantly among the different rs452159 genotype CHF patients. Although further studies with larger cohorts and other ethnicities are required to validate the conclusions, the findings of this study potentially provide novel insight into the pathogenesis of CHF.


Subject(s)
Adenosine Deaminase/genetics , Heart Failure/genetics , Polymorphism, Single Nucleotide , Aged , Case-Control Studies , China , Female , Humans , Male , Middle Aged
18.
Front Microbiol ; 5: 37, 2014.
Article in English | MEDLINE | ID: mdl-24575081

ABSTRACT

A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system.

19.
Asian Pac J Cancer Prev ; 14(10): 6135-40, 2013.
Article in English | MEDLINE | ID: mdl-24289639

ABSTRACT

BACKGROUND: Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. METHODS: The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. RESULTS: Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-π (GST-π) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. CONCLUSION: The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-π.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Disease Models, Animal , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Paclitaxel/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Breast Neoplasms/pathology , Cell Culture Techniques , Cell Cycle/drug effects , Cell Proliferation/drug effects , Female , Humans , Immunoenzyme Techniques , Mice , Mice, Inbred BALB C , Mice, Nude , Tumor Cells, Cultured
20.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 5): m241, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23723759

ABSTRACT

In the title complex, [ZnCl2(C10H9N5)2], the Zn(II) ion is coordinated by two N atoms from two 2-[(1H-1,2,4-triazol-1-yl)meth-yl]-1H-benzimidazole (tmb) ligands and by two chloride ligands in a slightly distorted tetra-hedral geometry. In the tmb ligands, the benzimidazole rings systems are essentially planar, with maximum deviations from the mean plane of 0.021 (3) and 0.030 (3) Å, and form dihedral angles of 73.2 (2) and 83.5 (2)° with the triazole rings. In the crystal, N-H⋯N hydrogen bonds link complex mol-ecules into chains along [010]. In addition, weak C-H⋯Cl and C-H⋯N hydrogen bonds complete a three-dimensional network. Two weak intra-molecular C-H⋯Cl hydrogen bonds are also observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...