Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(5): 8042-8048, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859922

ABSTRACT

We experimentally investigate the frequency down-conversion through the four-wave mixing (FWM) process in a cold 85Rb atomic ensemble, with a diamond-level configuration. An atomic cloud with a high optical depth (OD) of 190 is prepared to achieve a high efficiency frequency conversion. Here, we convert a signal pulse field (795 nm) attenuated to a single-photon level, into a telecom light at 1529.3 nm within near C-band range and the frequency-conversion efficiency can reach up to 32%. We find that the OD is an essential factor affecting conversion efficiency and the efficiency may exceed 32% with an improvement in the OD. Moreover, we note the signal-to-noise ratio of the detected telecom field is higher than 10 while the mean signal count is larger than 0.2. Our work may be combined with quantum memories based on cold 85Rb ensemble at 795 nm and serve for long-distance quantum networks.

2.
Opt Lett ; 48(2): 477-480, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638488

ABSTRACT

Inherent spin angular momentum (SAM) and orbital angular momentum (OAM), which manifest as polarization and spatial degrees of freedom (DOFs) of photons, hold a promise of large capability for applications in classical and quantum information processing. To enable these photonic spin and orbital dynamic properties strongly coupled with each other, Poincaré states have been proposed and offer advantages in data multiplexing, information encryption, precision metrology, and quantum memory. However, since the transverse size of Laguerre-Gaussian beams strongly depends on their topological charge numbers | l |, it is difficult to store asymmetric Poincaré states due to the significantly different light-matter interaction for distinct spatial modes. Here, we experimentally realize the storage of perfect Poincaré states with arbitrary OAM quanta using the perfect optical vortex, in which 121 arbitrarily selected perfect Poincaré states have been stored with high fidelity. The reported work has great prospects in optical communication and quantum networks for dramatically increased encoding flexibility of information.

3.
Phys Rev Lett ; 131(24): 240801, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181137

ABSTRACT

Building an efficient quantum memory in high-dimensional Hilbert spaces is one of the fundamental requirements for establishing high-dimensional quantum repeaters, where it offers many advantages over two-dimensional quantum systems, such as a larger information capacity and enhanced noise resilience. To date, it remains a challenge to develop an efficient high-dimensional quantum memory. Here, we experimentally realize a quantum memory that is operational in Hilbert spaces of up to 25 dimensions with a storage efficiency of close to 60% and a fidelity of 84.2±0.6%. The proposed approach exploits the spatial-mode-independent interaction between atoms and photons which are encoded in transverse-size-invariant vortex modes. In particular, our memory features uniform storage efficiency and low crosstalk disturbance for 25 individual spatial modes of photons, thus allowing the storing of qudit states programmed from 25 eigenstates within the high-dimensional Hilbert spaces. These results have great prospects for the implementation of long-distance high-dimensional quantum networks and quantum information processing.

4.
Phys Rev Lett ; 129(19): 193601, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36399758

ABSTRACT

Quantum memories that are capable of storing multiple spatial modes offer advantages in speed and robustness when incorporated into quantum networks. When it comes to spatial degrees of freedom, orbital angular momentum (OAM) modes have received widespread attention since they enable encoding with inherent infinite number of dimensions. Although the faithful storage of OAM qubits or qutrits has been realized in previous works, the achieved lifetimes are still on the order of a few microseconds as limited by the spatially dependent decoherence. We here demonstrate a long-lived quantum memory for OAM qutrits by suppressing the decoherence in the transverse and longitude direction simultaneously; the achieved fidelity beats the quantum-classical criteria after a storage time of 400 µs, which is 2 orders of magnitude longer than earlier works. The present work is promising for establishing high-dimensional quantum networks.

5.
Sci Adv ; 7(12)2021 Mar.
Article in English | MEDLINE | ID: mdl-33741596

ABSTRACT

Nonreciprocal devices operating at the single-photon level are fundamental elements for quantum technologies. Because magneto-optical nonreciprocal devices are incompatible for magnetic-sensitive or on-chip quantum information processing, all-optical nonreciprocal isolation is highly desired, but its realization at the quantum level is yet to be accomplished at room temperature. Here, we propose and experimentally demonstrate two regimes, using electromagnetically induced transparency (EIT) or a Raman transition, for all-optical isolation with warm atoms. We achieve an isolation of 22.52 ± 0.10 dB and an insertion loss of about 1.95 dB for a genuine single photon, with bandwidth up to hundreds of megahertz. The Raman regime realized in the same experimental setup enables us to achieve high isolation and low insertion loss for coherent optical fields with reversed isolation direction. These realizations of single-photon isolation and coherent light isolation at room temperature are promising for simpler reconfiguration of high-speed classical and quantum information processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...