Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 214: 290-300, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35716788

ABSTRACT

AHL (AT-HOOK MOTIF NUCLEAR LOCALIZED) protein is an important transcription factor in plants that regulates a wide range of biological process. It is considered to have evolved from an independent PPC domain in prokaryotes to a complete protein in modern plants. AT-hook motif and PPC conserved domains are the main functional domains of AHL. Since the discovery of AHL, their evolution and function have been continuously studied. The AHL gene family has been identified in multiple species and the functions of several members of the gene family have been studied. Here, we summarize the evolution and structural characteristics of AHL genes, and emphasize their biological functions. This review will provide a basis for further functional study and crop breeding.


Subject(s)
AT-Hook Motifs , Arabidopsis Proteins , AT-Hook Motifs/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Inorg Chem ; 61(32): 12489-12493, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35587196

ABSTRACT

The electrochemical oxygen evolution reaction (OER) is an essential anodic reaction that converts sustainable energy into chemical fuels, as it can provide protons and electrons. One of the most challenging research directions for the practical application of the OER is the elevation of the activity of noble-metal-free electrocatalysts. Here, we report that the nickel foam can be used as an electron-deficient substrate to tune the surface oxidation state of catalytic electrodes and thus boost the OER activity of CuP2 nanosheets via a charge-storage mechanism. The as-obtained self-standing CuP2/Ni electrodes delivered a current density of 220 mA cm-2 at 370 mV overpotential, which is approximately 5.5 times higher than the benchmarked IrO2 on nickel foam. This work sheds some new light on the design of low-cost electrocatalysts or electrodes with high activity for the electrochemical OER.

3.
Front Plant Sci ; 12: 714305, 2021.
Article in English | MEDLINE | ID: mdl-34567028

ABSTRACT

AT-hook motif nuclear localization (AHL) proteins belong to a family of transcription factors, and play important roles in plant growth and development and response to various stresses through protein-DNA and protein-protein interactions. To better understand the Brassica napus AHL gene family, AHL genes in B. napus and related species were analyzed. Using Arabidopsis as a reference, 122 AHL gene family members were first identified in B. napus. According to the phylogenetic tree and gene organization, the BnaAHLs were classified into two clades (Clade-A and Clade-B) and three types (Type-I, Type-II, and Type-III). Gene organization and motif distribution analysis suggested that the AHL gene family is relatively conserved during evolution. These BnaAHLs are unevenly distributed on 38 chromosomes and expanded by whole-genome duplication (WGD) or segmental duplication. And large-scale loss events have also occurred in evolution. All types of BnaAHLs are subject to purification or neutral selection, while some positive selection sites are also identified in Type-II and Type-III groups. At the same time, the purification effect of Type-I members are stronger than that of the others. In addition, RNA-seq data and cis-acting element analysis also suggested that the BnaAHLs play important roles in B. napus growth and development, as well as in response to some abiotic and biotic stresses. Protein-protein interaction analysis identified some important BnaAHL-binding proteins, which also play key roles in plant growth and development. This study is helpful to fully understand the origin and evolution of the AHL gene in B. napus, and lays the foundation for their functional studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...