Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 733
Filter
1.
Med ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38776915

ABSTRACT

BACKGROUND: Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS: Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS: Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING: This work was supported by NIH RM1HG009491 and DP5OD033430.

2.
Article in English | MEDLINE | ID: mdl-38704773

ABSTRACT

BACKGROUND: Young patients with breast ductal carcinoma in situ (DCIS) often face a poorer prognosis. The genomic intricacies in young-onset DCIS, however, remain underexplored. METHODS: To address this gap, we undertook a comprehensive study encompassing exome, transcriptome, and vmethylome analyses. Our investigation included 20 DCIS samples (including 15 young-onset DCIS) and paired samples of normal breast tissue and blood. RESULTS: Through RNA sequencing, we identified two distinct DCIS subgroups: "immune hot" and "immune cold". The "immune hot" subgroup was characterized by increased infiltration of lymphocytes and macrophages, elevated expression of PDCD1 and CTLA4, and reduced GATA3 expression. This group also exhibited active immunerelated transcriptional regulators. Mutational analysis revealed alterations in TP53 (38%), GATA3 (25%), and TTN (19%), with two cases showing mutations in APC, ERBB2, and SMARCC1. Common genomic alterations, irrespective of immune status, included gains in copy numbers at 1q, 8q, 17q, and 20q, and losses at 11q, 17p, and 22q. Signature analysis highlighted the predominance of signatures 2 and 1, with "immune cold" samples showing a significant presence of signature 8. Our methylome study on 13 DCIS samples identified 328 hyperdifferentially methylated regions (DMRs) and 521 hypo-DMRs, with "immune cold" cases generally showing lower levels of methylation. CONCLUSION: In summary, the molecular characteristics of young-onset DCIS share similarities with invasive breast cancer (IBC), potentially indicating a poor prognosis. Understanding these characteristics, especially the immune microenvironment of DCIS, could be pivotal in identifying new therapeutic targets and preventive strategies for breast cancer.

3.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759624

ABSTRACT

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Subject(s)
CCCTC-Binding Factor , Enhancer Elements, Genetic , Insulin-Like Growth Factor II , RNA, Long Noncoding , SOXB1 Transcription Factors , Animals , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Locus Control Region/genetics , Genomic Imprinting , Genomics/methods
4.
Cell Commun Signal ; 22(1): 283, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783346

ABSTRACT

BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Carnitine O-Palmitoyltransferase , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Humans , Animals , Cell Line, Tumor , Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Energy Metabolism/genetics , Up-Regulation , Disease Progression , Cell Proliferation , Mice, Nude , Mice , Female , Male , S Phase , Mice, Inbred BALB C
5.
Food Res Int ; 187: 114373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763649

ABSTRACT

Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.


Subject(s)
Digestion , Fatty Acids , Lauric Acids , Manihot , Starch , X-Ray Diffraction , Manihot/chemistry , Starch/chemistry , Lauric Acids/chemistry , Fatty Acids/chemistry , Decanoic Acids/chemistry , Rheology , Caprylates/chemistry , Magnetic Resonance Spectroscopy
6.
Microb Pathog ; 192: 106719, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810768

ABSTRACT

Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.

7.
Nat Med ; 30(5): 1448-1460, 2024 May.
Article in English | MEDLINE | ID: mdl-38760586

ABSTRACT

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Subject(s)
Heart Transplantation , Heterografts , Transplantation, Heterologous , Humans , Animals , Swine , Male , Female , Graft Rejection/immunology , Graft Rejection/genetics , Proteomics , Metabolomics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Transcriptome , Gene Expression Profiling , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lipidomics , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Multiomics
8.
Int J Biol Macromol ; 271(Pt 1): 132539, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777023

ABSTRACT

The deep-sea fungus Phomopsis lithocarpus FS508 produces tenellone-macrolide conjugated hetero-dimer lithocarpins A-G with anti-tumor activities. The deficiency of new intermolecular Diels-Alder (DA) enzymes hindered the development of new bioactive hetero-dimers. A novel single-function intermolecular DA enzyme, g7882, was initially discovered in this study. The deletion of g7882 led to the disappearance of lithocarpin A and an increase in precursor level . the overexpression of g7882 significantly improved lithocarpin A yield. The in vitro function of g7882DA was also confirmed by biochemical reaction using tenellone B as a substrate. Additionally, the knockout of KS modules of PKS in cluster 41 and cluster 81 (lit cluster) eliminated the production of lithocarpins, which firstly explains the biosynthetic process of hetero-dimer lithocarpins mediated by DA enzyme in FS508. Furthermore, the removal of a novel acetyltransferase GPAT in cluster 41 and the oxidoreductase, prenyltransferase in cluster81 resulted in the reduction of lithocarpin A in P. lithocarpus. The overexpression of gpat in P. lithocarpus FS508 improved the yield of lithocarpin A significantly and produced a new tenellone derivative lithocarol G. This study offers a new DA enzyme tool for the biosynthesis of novel hetero-dimer and biochemical clues for the biosynthetic logic elucidation of lithocarpins.

9.
Natl Sci Rev ; 11(5): nwae150, 2024 May.
Article in English | MEDLINE | ID: mdl-38803565

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.

10.
Biotechnol Prog ; : e3460, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558545

ABSTRACT

Lung cancer has a high incidence rate and a low cure rate, hence the urgent need for effective treatment methods. Current lung cancer drugs have several drawbacks, including low specificity, poor targeting, drug resistance, and irreversible damage to normal tissues. Therefore, there is a need to develop a safe and effective new drug that can target and kill tumor cells. In this study, we combined nanotechnology and biotechnology to develop a CD133 ligand-modified etoposide-liposome complex (Lipo@ETP-CD133) for targeted therapy of lung cancer. The CD133 ligand targeted lung cancer stem cells, causing the composite material to aggregate at the tumor site, where high levels of ETP liposomes could exert a strong tumor-killing effect. Our research results demonstrated that this nano-drug had efficient targeting and tumor-killing effects, indicating its potential for clinical application.

11.
Adv Mater ; : e2402515, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616719

ABSTRACT

The artificial brain is conceived as advanced intelligence technology, capable to emulate in-memory processes occurring in the human brain by integrating synaptic devices. Within this context, improving the functionality of synaptic transistors to increase information processing density in neuromorphic chips is a major challenge in this field. In this article, Li-ion migration promoting long afterglow organic light-emitting transistors, which display exceptional postsynaptic brightness of 7000 cd m-2 under low operational voltages of 10 V is presented. The postsynaptic current of 0.1 mA operating as a built-in threshold switch is implemented as a firing point in these devices. The setting-condition-triggered long afterglow is employed to drive the photoisomerization process of photochromic molecules that mimic neurotransmitter transfer in the human brain for realizing a key memory rule, that is, the transition from long-term memory to permanent memory. The combination of setting-condition-triggered long afterglow with photodiode amplifiers is also processed to emulate the human responding action after the setting-training process. Overall, the successful integration in neuromorphic computing comprising stimulus judgment, photon emission, transition, and encoding,  to emulate the complicated decision tree of the human brain is demonstrated.

12.
Front Pharmacol ; 15: 1349139, 2024.
Article in English | MEDLINE | ID: mdl-38633614

ABSTRACT

Introduction: According to traditional Chinese veterinary medicine, endometritis is caused by a combination of Qi deficiency, blood stasis, and external evil invasion. Salvia miltiorrhiza is a traditional Chinese medicine that counteracts blood stasis and has additional demonstrated effects in boosting energy and restraining inflammation. Salvia miltiorrhiza has been employed in many traditional Chinese prescriptions that have proven effective in healing clinical dairy cow endometritis. Methods: the in vivo effect of Salvia miltiorrhiza in treating endometritis was evaluated in dairy cows. In addition, bovine endometrial epithelium cell inflammation and rat blood stasis models were employed to demonstrate the crosstalk between energy, blood circulation and inflammation. Network analysis, western blotting, qRT-PCR and ELISA were performed to investigate the molecular mechanism of Salvia miltiorrhiza in endometritis treatment. Results: The results demonstrate that treatment with Salvia miltiorrhiza relieves uterine inflammation, increases blood ATP concentrations, and prolongs blood clotting times. Four of the six Salvia miltiorrhiza main components (SMMCs) (tanshinone IIA, cryptotanshinone, salvianolic acid A and salvianolic acid B) were effective in reversing decreased ATP and increased IL-1ß, IL-6, and IL-8 levels in an in vitro endometritis model, indicating their abilities to ameliorate the negative energy balance and external evil invasion effects of endometritis. Furthermore, in a blood stasis rat model, inflammatory responses were induced in the absence of external infection; and all six SMMCs inhibited thrombin-induced platelet aggregation. Network analysis of SMMC targets predicted that Salvia miltiorrhiza may mediate anti-inflammation via the Toll-like receptor signaling pathway; anti-aggregation via the Platelet activation pathway; and energy balance via the Thermogenesis and AMPK signaling pathways. Multiple molecular targets within these pathways were verified to be inhibited by SMMCs, including P38/ERK-AP1, a key molecular signal that may mediate the crosstalk between inflammation, energy deficiency and blood stasis. Conclusion: These results provide mechanistic understanding of the therapeutic effect of Salvia miltiorrhiza for endometritis achieved through Qi deficiency, blood stasis, and external evil invasion.

13.
Genome Med ; 16(1): 50, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566210

ABSTRACT

BACKGROUND: Mitochondria play essential roles in tumorigenesis; however, little is known about the contribution of mitochondrial DNA (mtDNA) to esophageal squamous cell carcinoma (ESCC). Whole-genome sequencing (WGS) is by far the most efficient technology to fully characterize the molecular features of mtDNA; however, due to the high redundancy and heterogeneity of mtDNA in regular WGS data, methods for mtDNA analysis are far from satisfactory. METHODS: Here, we developed a likelihood-based method dMTLV to identify low-heteroplasmic mtDNA variants. In addition, we described fNUMT, which can simultaneously detect non-reference nuclear sequences of mitochondrial origin (non-ref NUMTs) and their derived artifacts. Using these new methods, we explored the contribution of mtDNA to ESCC utilizing the multi-omics data of 663 paired tumor-normal samples. RESULTS: dMTLV outperformed the existing methods in sensitivity without sacrificing specificity. The verification using Nanopore long-read sequencing data showed that fNUMT has superior specificity and more accurate breakpoint identification than the current methods. Leveraging the new method, we identified a significant association between the ESCC overall survival and the ratio of mtDNA copy number of paired tumor-normal samples, which could be potentially explained by the differential expression of genes enriched in pathways related to metabolism, DNA damage repair, and cell cycle checkpoint. Additionally, we observed that the expression of CBWD1 was downregulated by the non-ref NUMTs inserted into its intron region, which might provide precursor conditions for the tumor cells to adapt to a hypoxic environment. Moreover, we identified a strong positive relationship between the number of mtDNA truncating mutations and the contribution of signatures linked to tumorigenesis and treatment response. CONCLUSIONS: Our new frameworks promote the characterization of mtDNA features, which enables the elucidation of the landscapes and roles of mtDNA in ESCC essential for extending the current understanding of ESCC etiology. dMTLV and fNUMT are freely available from https://github.com/sunnyzxh/dMTLV and https://github.com/sunnyzxh/fNUMT , respectively.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/analysis , DNA, Mitochondrial/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Likelihood Functions , Mitochondria/genetics , Carcinogenesis
14.
Food Chem X ; 22: 101328, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38576778

ABSTRACT

This work aims to study the effects of oral gavage (0.2 mg/g body weight) of elaidic acid (C18:1-9 t, EA) and linoelaidic acid (C18:2-9 t,12 t, LEA) on lipid metabolism, inflammation and gut homeostasis of mice. Results showed that both EA and LEA gavage significantly increased LDL-c, TC and oxidative stress levels in the liver and serum and may stimulate liver inflammation via NF-κB and MAPK signaling pathway. Compared with EA, LEA gavage significantly promoted TAG accumulation and inflammatory signaling. Serum lipidomics revealed that LEA intake significantly increased the concentration of ∼50 TAGs, while EA gavage primarily caused significant decreases in several SMs. 16S rRNA demonstrated that LEA ingestion markedly changed fecal microbiota by enriching Lactobacillus (phylum Firmicutes), however, EA treatment did not affect it. Overall, LEA gavage has more severe consequences on TAG accumulation, inflammation and microbial structure than EA, highlighting that the number of trans double bonds affects these processes.

15.
World J Gastroenterol ; 30(10): 1377-1392, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38596500

ABSTRACT

BACKGROUND: Crohn's disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). However, the treatment and prognosis of these two diseases are dramatically different. Therefore, it is important to develop a method to identify CD and ITB with high accuracy, specificity, and speed. AIM: To develop a method to identify CD and ITB with high accuracy, specificity, and speed. METHODS: A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB. Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis. RESULTS: The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm-1 and 1234 cm-1 bands, and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy, specificity, and sensitivity of 91.84%, 92.59%, and 90.90%, respectively, for the differential diagnosis of CD and ITB. CONCLUSION: Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level, and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.


Subject(s)
Crohn Disease , Enteritis , Tuberculosis, Gastrointestinal , Humans , Crohn Disease/diagnosis , Crohn Disease/pathology , Spectroscopy, Fourier Transform Infrared , Diagnosis, Differential , Paraffin , Tuberculosis, Gastrointestinal/diagnosis , Tuberculosis, Gastrointestinal/pathology , Enteritis/diagnosis , Machine Learning , Ataxia Telangiectasia Mutated Proteins
16.
Food Chem X ; 22: 101363, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38681229

ABSTRACT

In this study, ω-3 medium- and long-chain triacylglycerols (MLCTs) microcapsules with excellent performance were obtained using soy protein as the wall component to address the oxidation-related problems of MLCTs. Additionally, the effect of soy, whey, or pea proteins on microcapsules in terms of the changes in their structure and physicochemical properties was investigated. The results showed that the small particle size, low PDI (polydispersity index) and zeta potential, fast adsorption rate, and low interfacial tension of these protein-based samples fabricated through the O/W template method were conducive to maintaining the integrity of microcapsules during spray-drying. The microcapsules, characterized by a spherical shape, exhibited superior encapsulation efficiency of 94.56%, surpassing the findings of previous investigations. Overall, these microcapsules exhibited long-term storage stability and low controllable release rates, which could be utilized as carriers for liposoluble actives.

17.
Fitoterapia ; 175: 105931, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608733

ABSTRACT

Pararorine A, a new isoindolinone alkaloid was isolated from Paramyrothecium roridum, an endophytic fungus from the medicinal plant Gynochthodes officinalis (F.C. How) Razafim. & B. Bremer. The structure of this compound was elucidated by extensive spectroscopic (UV, IR, MS, and NMR) analyses. In addition, the antitumor activity of pararorine A was evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that pararorine A exhibited potent antitumor activities with the IC50 values ranging from 1.69 to 8.95 µM. Moreover, the tumor cell inhibitory activity of pararorine A was evidenced by promoting cytochrome C release and cell cycle arrest as well as the induction of apoptosis by the up-regulation of the protein expressions of JNK and Bax through PARP-cleavage and caspase 3-cleavage.


Subject(s)
Apoptosis , Humans , Molecular Structure , Cell Line, Tumor , Apoptosis/drug effects , Endophytes/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , China
18.
Fitoterapia ; 175: 105952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614405

ABSTRACT

Three new xanthone derivatives irpexols A-C (1-3) and five known xanthones including three dimeric ones were successfully isolated from Irpex laceratus A878, an endophytic fungus of the family Irpicaceae from the medicinal plant Pogostemon cablin (Blanco) Bentham (Lamiaceae). The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR). All of the three new compounds (1-3) share a de-aromatic and highly­oxygenated xanthone skeleton. In addition, the cytotoxic activity of compounds 1-8 were evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that compound 6 showed moderate cytotoxic activity with the IC50 values ranging from 24.83 to 45.46 µM, while the IC50 values of the positive control adriamycin was ranging from 1.11 to 1.44 µM.


Subject(s)
Endophytes , Xanthones , Xanthones/isolation & purification , Xanthones/pharmacology , Xanthones/chemistry , Molecular Structure , Humans , Endophytes/chemistry , Cell Line, Tumor , Pogostemon/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/chemistry , China
19.
Front Vet Sci ; 11: 1360102, 2024.
Article in English | MEDLINE | ID: mdl-38444776

ABSTRACT

Transmissible gastroenteritis virus (TGEV) could cause diarrhea, vomiting, dehydration and even death in piglets, miRNA played an important role in the interaction between virus and cell. The study aimed to investigate the impact of miR-17 on the polysaccharide of Polygonum Cillinerve (PCP) in combating TGEV. miR-17 was screened and transfection validation was performed by Real-time PCR. The function of miR-17 on PK15 cells infected with TGEV and treated with PCP was investigated by DCFH-DA loading probe, JC-1 staining and Hoechst fluorescence staining. Furthermore, the effect of miR-17 on PCP inhibiting TGEV replication and apoptosis signaling pathways during PCP against TGEV infection was measured through Real-time PCR and Western blot. The results showed that miR-17 mimic and inhibitor could be transferred into PK15 cells and the expression of miR-17 significantly increased and decreased respectively compared with miR-17 mimic and inhibitor (P < 0.05). A total 250 µg/mL of PCP could inhibit cells apoptosis after transfection with miR-17. PCP (250 µg/mL and 125 µg/mL) significantly inhibited the decrease in mitochondrial membrane potential induced by TGEV after transfection with miR-17 (P < 0.05). After transfection of miR-17 mimic, PCP at concentrations of 250 µg/mL and 125 µg/mL significantly promoted the mRNA expression of P53, cyt C and caspase 9 (P < 0.05). Compared with the control group, the replication of TGEV gRNA and gene N was significantly inhibited by PCP at concentrations of 250 µg/mL and 125 µg/mL after transfection of both miR-17 mimic and inhibitor (P < 0.05). PCP at 62.5 µg/mL significantly inhibited the replication of gene S following transfection with miR-17 inhibitor (P < 0.05). These results suggested that PCP could inhibit the replication of TGEV and apoptosis induced by TGEV by regulating miR-17.

20.
Arthritis Res Ther ; 26(1): 71, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493104

ABSTRACT

OBJECTIVE: Transferrin receptor-1 (TfR1) plays important roles in controlling cellular iron levels, but its role in OA pathology is unknown. Herein we aim to investigate the role of TfR1 in OA progression and its underlying mechanisms. METHODS: TfR1 expression in cartilage during OA development were examined both in vivo and in vitro. Then IL-1ß was used to induce chondrocytes degeneration in vitro and TfR1 siRNA was used for observing the effect of TfR1 in modulating iron homeostasis, mitochondrial function and degrading enzymes expression. Also the inhibitor of TfR1 was exploited to analyze the protective effect of TfR1 inhibition in vivo. RESULTS: TfR1 is elevated in OA cartilage and contributes to OA inflammation condition. Excess iron not only results in oxidative stress damage and sensitizes chondrocytes to ferroptosis, but also triggers c-GAS/STING-mediated inflammation by promoting mitochondrial destruction and the release of mtDNA. Silencing TfR1 using TfR1 siRNA not only reduced iron content in chondrocytes and inhibited oxidative stress, but also facilitated the mitophagy process and suppressed mtDNA/cGAS/STING-mediated inflammation. Importantly, we also found that Ferstatin II, a novel and selective TfR1 inhibitor, could substantially suppress TfR1 activity both in vivo and in vitro and ameliorated cartilage degeneration. CONCLUSION: Our work demonstrates that TfR1 mediated iron influx plays important roles in chondrocytes degeneration and OA pathogenesis, suggesting that maintaining iron homeostasis through the targeting of TfR1 may represent a novel therapeutic strategy for the treatment of OA.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/metabolism , Cartilage/metabolism , Inflammation/pathology , Chondrocytes/metabolism , DNA, Mitochondrial , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...