Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Am J Bot ; 109(5): 746-767, 2022 05.
Article in English | MEDLINE | ID: mdl-35619567

ABSTRACT

PREMISE: The inflorescences of Solanaceae are unique and complex, which has led to long-standing disputes over floral symmetry mainly due to different interpretations of the cyme-like inflorescence structure. The main disagreements have been over how the phyllomes associated with the flower were arranged relative to the inflorescence axis especially during early flower initiation. METHODS: Here we investigated the evolution of inflorescences in Solanaceae by analyzing inflorescence structure in the context of phylogeny using ancestral state reconstruction (ASR) to determine the evolutionary transitions between loosely arranged and tightly clustered inflorescences and between monochasial-like and dichasial-like cymes. We also reconstructed two- and three-dimensional models for 12 solanaceous species that represent both inflorescence and phylogenetic diversity in the family. RESULTS: Our results indicate that the most recent common ancestor of Solanaceae had a loosely arranged and monochasial-like cyme, while tightly clustered inflorescences and dichasial-like cymes were derived. Compared to the known process of scorpioid cyme evolution, Solanaceae achieved their scorpioid cyme-like inflorescences through a previously undescribed way. Along the pedicel, the two flower-preceding prophylls are not in the typical transverse position of dicotyledonous plants; they frequently have axillary buds, and the main inflorescence axis continues in a sympodial fashion. As a result, the plane of symmetry of the flower is 36° from the median, and the inflorescence axis and the two flower-preceding prophylls are symmetrically located along that plane. CONCLUSIONS: A better understanding of the morphological evolution of solanaceous inflorescence structure helped clarify the floral symmetry of Solanaceae.


Subject(s)
Magnoliopsida , Solanaceae , Flowers/anatomy & histology , Inflorescence/anatomy & histology , Phylogeny , Solanaceae/genetics
2.
ChemSusChem ; 12(22): 5051-5058, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31596030

ABSTRACT

Conductive metal-organic frameworks (MOFs), as a newly emerging multifunctional material, hold enormous promise in electrochemical energy-storage systems owing to their merits including good electronic conductivity, large surface area, appropriate pore structure, and environmental friendliness. In this contribution, a scalable solvothermal strategy was devised for the bottom-up fabrication of 1D Cu-based conductive MOF, that is, Cu3 (2,3,6,7,10,11-hexahydroxytriphenylene)2 (Cu-CAT) nanowires (NWs), which were further utilized as a competitive anode for lithium-ion batteries (LIBs). The intrinsic Li storage mechanism of the Cu-CAT electrode was also explored. Benefiting from its structural virtues, the resultant 1D Cu-CAT NWs were endowed with superb Li+ diffusion coefficients and electrochemical conductivities and exhibited remarkably high-rate reversible capacities of approximately 631 mAh g-1 at 0.2 A g-1 and even approximately 381 mAh g-1 at 2 A g-1 , along with striking capacity retention of 81 % after 500 cycles at 0.5 A g-1 . In addition, a Cu-CAT NWs-based full cell assembled with LiNi0.8 Co0.1 Mn0.1 O2 as the cathode displayed a large energy density of approximately 275 Wh kg-1 as well as excellent cycling behavior. These results manifest the promising application of 1D conductive Cu-CAT NWs in advanced LIBs and even other potential versatile energy-related fields.

3.
Am J Bot ; 104(12): 1846-1856, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29247025

ABSTRACT

PREMISE OF THE STUDY: Observations of floral ontogeny indicated that floral organ initiation in pentapetalous flowers most commonly results in a median-abaxial (MAB) petal during early development, a median-adaxial (MAD) petal being less common. Such different patterns of floral organ initiation might be linked with different morphologies of floral zygomorphy that have evolved in Asteridae. Here, we provide the first study of zygomorphy in pentapetalous angiosperms placed in a phylogenetic framework, the goal being to find if the different patterns of floral organ initiation are connected with particular patterns of zygomorphy. METHODS: We analyzed patterns of floral organ initiation and displays of zygomorphy, extracted from floral diagrams representing 405 taxa in 330 genera, covering 83% of orders (30 out of 36) and 37% of families (116 out of 313) in core eudicots in the context of a phylogeny using ancestral state reconstructions. KEY RESULTS: The MAB petal initiation is the ancestral state of the pattern of floral organ initiation in pentapetalous angiosperms. Taxa with MAD petal initiation represent ∼30 independent origins from the ancestral MAB initiation. There are distinct developmental processes that give rise to zygomorphy in different lineages of pentapetalous angiosperms, closely related lineages being likely to share similar developmental processes. CONCLUSIONS: We have demonstrated that development indeed constrains the processes that give rise to floral zygomorphy, while phylogenetic distance allows relaxation of these constraints, which provides novel insights on the role that development plays in the evolution of floral zygomorphy.


Subject(s)
Biological Evolution , Flowers/growth & development , Magnoliopsida/genetics , Magnoliopsida/physiology
4.
Int J Mol Sci ; 18(9)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28902138

ABSTRACT

Developmental genetic studies of Antirrhinum majus demonstrated that two transcription factors from the MYB gene family, RADIALIS (RAD) and DIVIRICATA (DIV), interact through antagonism to regulate floral dorsoventral asymmetry. Interestingly, similar antagonistic interaction found among proteins of FSM1 (RAD-like) and MYBI (DIV-like) in Solanum lycopersicum is involved in fruit development. Here, we report the reconstruction of the phylogeny of I-box-like and R-R-type clades, where RAD- and DIV-like genes belong, respectively. We also examined the homology of these antagonistic MYB proteins using these phylogenies. The results show that there are likely three paralogs of RAD-/I-box-like genes, RAD1, RAD2, and RAD3, which originated in the common ancestor of the core eudicots. In contrast, R-R-type sequences fall into two major clades, RR1 and RR2, the result of gene duplication in the common ancestor of both monocots and dicots. RR1 was divided into clades RR1A, RR1B, and RR1C, while RR2 was divided into clades RR2A/DIV1, RR2B/DIV2, and RR2C/DIV3. We demonstrate that among similar antagonistic interactions in An. Majus and So. lycopersicum, RAD-like genes originate from the RAD2 clade, while DIV-like genes originate from distantly related paralogs of the R-R-type lineage. The phylogenetic analyses of these two MYB clades lay the foundation for future comparative studies including testing the evolution of the antagonistic relationship of proteins.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genetic Variation , Phylogeny , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/genetics , Convolvulaceae/genetics , Endodeoxyribonucleases/antagonists & inhibitors , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Gene Duplication , Magnoliopsida/genetics , Oryza/genetics , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA , Solanaceae/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Front Plant Sci ; 4: 302, 2013.
Article in English | MEDLINE | ID: mdl-23970887

ABSTRACT

Malpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy), which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal) region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy) like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World (NW) Malpighiaceae. In NW Lasiocarpus and Old World (OW) Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in NW Psychopterys and OW Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program.

6.
PLoS One ; 7(4): e36033, 2012.
Article in English | MEDLINE | ID: mdl-22558314

ABSTRACT

The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2-like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant-pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program.


Subject(s)
Biological Evolution , Flowers/anatomy & histology , Flowers/genetics , Malpighiaceae/anatomy & histology , Malpighiaceae/genetics , Flowers/growth & development , Flowers/ultrastructure , Gene Expression Regulation, Plant , Genes, Plant/genetics , Malpighiaceae/ultrastructure , Phenotype , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
7.
Proc Natl Acad Sci U S A ; 107(14): 6388-93, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20363959

ABSTRACT

The evolution of floral zygomorphy is an important innovation in flowering plants and is thought to arise principally from specialization on various insect pollinators. Floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to be caused by selection by its oil-bee pollinators. We sought to characterize the genetic basis of floral zygomorphy in Malpighiaceae by investigating CYCLOIDEA2-like (CYC2-like) genes, which are required for establishing symmetry in diverse core eudicots. We identified two copies of CYC2-like genes in Malpighiaceae, which resulted from a gene duplication in the common ancestor of the family. A likely role for these loci in the development of floral zygomorphy in Malpighiaceae is demonstrated by the conserved pattern of dorsal gene expression in two distantly related neotropical species, Byrsonima crassifolia and Janusia guaranitica. Further evidence for this function is observed in a Malpighiaceae species that has moved to the paleotropics and experienced coincident shifts in pollinators, floral symmetry, and CYC2-like gene expression. The dorsal expression pat-tern observed in Malpighiaceae contrasts dramatically with their actinomorphic-flowered relatives, Centroplacaceae (Bhesa paniculata) and Elatinaceae (Bergia texana). In particular, B. texana exhibits a previously undescribed pattern of uniform CYC2 expression, suggesting that CYC2 expression among the actinomorphic ancestors of zygomorphic lineages may be much more complex than previously thought. We consider three evolutionary models that may have given rise to this patterning, including the hypothesis that floral zygomorphy in Malpighiaceae arose earlier than standard morphology-based character reconstructions suggest.


Subject(s)
Flowers/anatomy & histology , Flowers/genetics , Pollination , Symbiosis , DNA-Binding Proteins , Flowers/physiology , Gene Duplication , Gene Expression Regulation, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Transcription Factors
8.
Mol Phylogenet Evol ; 49(1): 327-42, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18682295

ABSTRACT

Identifying causes of genetic divergence is a central goal in evolutionary biology. Although rates of nucleotide substitution vary among taxa and among genes, the causes of this variation tend to be poorly understood. In the present study, we examined the rate and pattern of molecular evolution for five DNA regions over a phylogeny of Cornus, the single genus of Cornaceae. To identify evolutionary mechanisms underlying the molecular variation, we employed Bayesian methods to estimate divergence times and to infer how absolute rates of synonymous and nonsynonymous substitutions and their ratios change over time. We found that the rates vary among genes, lineages, and through time, and differences in mutation rates, selection type and intensity, and possibly genetic drift all contributed to the variation of substitution rates observed among the major lineages of Cornus. We applied independent contrast analysis to explore whether speciation rates are linked to rates of molecular evolution. The results showed no relationships for individual genes, but suggested a possible localized link between species richness and rate of nonsynonymous nucleotide substitution for the combined cpDNA regions. Furthermore, we detected a positive correlation between rates of molecular evolution and morphological change in Cornus. This was particularly pronounced in the dwarf dogwood lineage, in which genome-wide acceleration in both molecular and morphological evolution has likely occurred.


Subject(s)
Cornus/classification , Cornus/genetics , Evolution, Molecular , Genetic Speciation , Bayes Theorem , Chloroplasts/genetics , Cornus/anatomy & histology , DNA, Chloroplast/genetics , DNA, Plant/genetics , Fossils , Genes, Plant , Genome, Chloroplast , Models, Genetic , Nucleotides/genetics , Phylogeny , Sequence Analysis, DNA
9.
Mol Phylogenet Evol ; 47(1): 175-95, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18304837

ABSTRACT

The MADS-box gene family encodes critical regulators determining floral organ development. Understanding evolutionary patterns and processes of MADS-box genes is an important step toward unraveling the molecular basis of floral morphological evolution. In this study, we investigated the evolution of PI-like genes of the MADS-box family in the dogwood genus Cornus (Cornaceae). Cornus is a eudicot lineage in the asterids clade, and is intriguing in evolving petaloid bract morphology in two major lineages within the genus. The gene genealogy reconstructed using genomic DNA and cDNA sequences suggests multiple PI-like gene duplication events in Cornus. An ancient duplication event resulted in two ancient paralogs, CorPI-A and CorPI-B, which have highly diverged intron regions. Duplication of CorPI-A further resulted in two paralogs in one subgroup of Cornus, the BW group that does not produce modified bracts. Most species analyzed were found to contain more than one copy of the PI-like gene with most copies derived recently within species. Estimation and comparison of dN/dS ratios revealed relaxed selection in the PI-like gene in Cornus in comparison with the gene in the closely related outgroups Alangium and Davidia, and in other flowering plants. Selection also differed among major gene copies, CorPI-A and CorPI-B, and among different morphological subgroups of Cornus. Variation in selection pressures may indicate functional changes in PI-like genes after gene duplication and among different lineages. Strong positive selection at three amino acid sites of CorPI was also detected from a region critical for dimerization activity. Total substitution rates of the CorPI gene also differ among lineages of Cornus, showing a trend similar to that found in dN/dS ratios. We also found that the CorPI-A copy contains informative phylogenetic information when compared across species of Cornus.


Subject(s)
Cornaceae/genetics , Evolution, Molecular , Genes, Plant , Plant Proteins/genetics , Amino Acid Sequence , Cornaceae/classification , DNA, Complementary , Gene Duplication , Molecular Sequence Data , Phylogeny , Selection, Genetic , Sequence Homology, Amino Acid
10.
Evolution ; 59(8): 1685-700, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16329240

ABSTRACT

Data from four DNA regions (rbcL, matK, 26S rDNA, and ITS) as well as extant and fossil morphology were used to reconstruct the phylogeny and biogeographic history of an intercontinentally disjunct plant group, the cornelian cherries of Cornus (dogwoods). The study tests previous hypotheses on the relative roles of two Tertiary land bridges, the North Atlantic land bridge (NALB) and the Bering land bridge (BLB), in plant migration across continents. Three approaches, the Bayesian, nonparametric rate smoothing (NPRS), and penalized likelihood (PL) methods, were employed to estimate the times of geographic isolations of species. Dispersal and vicariance analysis (DIVA) was performed to infer the sequence and directionality of biogeographic pathways. Results of phylogenetic analyses suggest that among the six living species, C. sessilis from western North America represents the oldest lineage, followed by C. volkensii from Africa. The four Eurasian species form a clade consisting of two sister pairs, C. mas-C. officinalis and C. chinensis-C. eydeana. Results of DIVA and data from fossils and molecular dating indicate that the cornelian cherry subgroup arose in Europe as early as the Paleocene. Fossils confirm that the group was present in North America by the late Paleocene, consistent with the DIVA predictions that, by the end of the Eocene, it had diversified into several species and expanded its distribution to North America via the NALB and to Africa via the last direct connection between Eurasia and Africa prior to the Miocene, or via long-distance dispersal. The cornelian cherries in eastern Asia appear to be derived from two independent dispersal events from Europe. These events are inferred to have occurred during the Oligocene and Miocene. This study supports the hypothesis that the NALB served as an important land bridge connecting the North American and European floras, as well as connecting American and African floras via Europe during the early Tertiary.


Subject(s)
Cornus/anatomy & histology , Cornus/genetics , Demography , Evolution, Molecular , Fossils , Genes, Plant/genetics , Phylogeny , Base Sequence , Bayes Theorem , Cornus/physiology , Geography , Likelihood Functions , Molecular Sequence Data , Population Dynamics , Sequence Analysis, DNA
11.
Mol Phylogenet Evol ; 26(2): 176-89, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12565029

ABSTRACT

Sequences of the chloroplast trnL-F region and 3(') end ndhF gene were used to elucidate phylogenetic relationships and the delimitation of families within Dipsacales s.l. Parsimony analyses of individual and combined data were conducted using maximum parsimony method. The most parsimonious tree based on combined trnL-F and 3(') end ndhF data set recognizes seven major clades of Dipsacales s.l. with the following relationships: Apiales (Adoxaceae ((Diervillaceae, Caprifoliaceae s.str.) (Linnaeaceae (Morinaceae (Dipsacaceae, Valerianaceae))))). Both Sambucus and Viburnum have close relationships with Adoxaceae, supporting their inclusion in this family. Caprifoliaceae s.l. (excluding Sambucus and Viburnum) is polyphyletic, and comprises three clades or families, i.e., Linnaeaceae (Abelia, Dipelta, Kolkwitzia, and Linnaea), Diervillaceae (Weigela and Diervilla) and Caprifoliaceae s.str. (Heptacodium, Leycesteria, Lonicera, Symphoricarpos, and Triosteum). This study focuses on the systematic position of Heptacodium, Triplostegia, and Morinaceae; and suggests that Heptacodium is closely related to the other Caprifoliaceae s.str.; Triplostegia is a sister to Dipsacaceae; Morinaceae, which has an affinity with Dipsacaceae, is possibly a sister group with Dipsacaceae-Valerianaceae clade. Our results are highly congruent with those of and.


Subject(s)
Perciformes/classification , Phylogeny , Animals , Biological Evolution , Genetic Variation , Geography , Models, Biological , Perciformes/anatomy & histology , Perciformes/genetics , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...