Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.131
Filter
1.
Conserv Biol ; : e14310, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842221

ABSTRACT

Climate change may diminish biodiversity; thus, it is urgent to predict how species' ranges may shift in the future by integrating multiple factors involving more taxa. Bats are particularly sensitive to climate change due to their high surface-to-volume ratio. However, few studies have considered geographic variables associated with roost availability and even fewer have linked the distributions of bats to their thermoregulation and energy regulation traits. We used species distribution models to predict the potential distributions of 12 bat species in China under current and future greenhouse gas emission scenarios (SSP1-2.6 and SSP5-8.5) and examined factors that could affect species' range shifts, including climatic, geographic, habitat, and human activity variables and wing surface-to-mass ratio (S-MR). The results suggest that Ia io, Rhinolophus ferrumequinum, and Rhinolophus rex should be given the highest priority for conservation in future climate conservation strategies. Most species were predicted to move northward, except for I. io and R. rex, which moved southward. Temperature seasonality, distance to forest, and distance to karst or cave were the main environmental factors affecting the potential distributions of bats. We found significant relationships between S-MR and geographic distribution, current potential distribution, and future potential distribution in the 2050s. Our work highlights the importance of analyzing range shifts of species with multifactorial approaches, especially for species traits related to thermoregulation and energy regulation, to provide targeted conservation strategies.


Patrones y correlaciones de los cambios potenciales en la distribución de las especies de murciélago de China en el contexto del cambio climático Resumen El cambio climático puede disminuir la biodiversidad, por lo que es urgente pronosticar cómo puede cambiar en el futuro la distribución de las especies mediante la integración de múltiples factores que involucren a más taxones. Los murciélagos son particularmente sensibles al cambio climático debido a que tienen una gran proporción superficie­volumen. Sin embargo, hay pocos estudios que han considerado las variables asociadas con la disponibilidad de nidos y son todavía menos los que han conectado la distribución de los murciélagos con sus rasgos de termorregulación y regulación de energía. Usamos modelos de distribución de especies para pronosticar la distribución potencial de doce especies de murciélago en China bajo escenarios actuales y futuros de emisión de gases de efecto invernadero (SSP1­2.6 y SSP5­8.5) y analizamos los factores que podrían afectar el cambio en la distribución de las especies, incluyendo las variables climáticas, geográficas, de hábitat y de actividad humana y la proporción entre la superficie del ala y la masa (P S­M). Los resultados sugieren que Ia io, Rhinolophus ferrumequinum y R. rex deberían ser la mayor prioridad de conservación para las estrategias de conservación climáticas en el futuro. Pronosticamos que la mayoría de las especies se desplazarían al norte, a excepción de I. io y R. rex, que se desplazarían hacia el sur. Los principales factores que afectaron la distribución potencial de los murciélagos fueron la estacionalidad de la temperatura, la distancia al bosque y la distancia a la cueva o al karst. Encontramos una relación significativa entre la P S­M y la distribución geográfica, la distribución potencial actual y la distribución potencial para la década de 2050. Nuestra investigación destaca la importancia del análisis de los cambios de distribución de las especies con enfoques multifactoriales, especialmente para los rasgos de especie relacionados con la termorregulación y la regulación de energía, para proporcionar estrategias de conservación focalizadas.

2.
J Am Chem Soc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842938

ABSTRACT

Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of natural products. The enzyme mechanism for the biaryl phenol coupling reaction of the bicyclic CCNPs remains unclear. Herein, we report the discovery of two new arabinofuranosylated bicyclic CCNPs cihanmycins (CHMs) A (1) and B (2) from Amycolatopsis cihanbeyliensis DSM 45679 and the identification of the CHM biosynthetic gene cluster (cih BGC) by heterologous expression in Streptomyces lividans SBT18 to afford CHMs C (3) and D (4). The structure of 1 was confirmed by X-ray diffraction analysis. Three cytochrome P450 enzyme (CYP)-encoding genes cih26, cih32, and cih33 were individually inactivated in the heterologous host to produce CHMs E (5), F (6), and G (7), respectively. The structures of 5 and 6 indicated that Cih26 was responsible for the hydroxylation and epoxidation of the cinnamoyl moiety, and Cih32 should catalyze the ß-hydroxylation of three amino acid residues. Cih33 and its homologues DmlH and EpcH were biochemically verified to convert CHM G (7) with a monocyclic structure to a bicyclic skeleton of CHM C (3) through an intramolecular C-O phenol coupling reaction. The substrate 7-bound crystal structure of DmlH not only established the structure of 7, which was difficult for NMR analysis for displaying anomalous splitting signals, but also provided the binding mode of macrocyclic peptides recognized by these intramolecular C-O coupling CYPs. In addition, computational studies revealed a water-mediated diradical mechanism for the C-O phenol coupling reaction. These findings have shed important mechanistic insights into the CYP-catalyzed phenol coupling reactions.

3.
Diabetes Res Clin Pract ; : 111726, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844054

ABSTRACT

Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.

4.
Nanomicro Lett ; 16(1): 190, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698298

ABSTRACT

A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

5.
Eur J Nutr ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703229

ABSTRACT

PURPOSE: The traditional Chinese herbal medicine Suaeda salsa (L.) Pall (S. salsa) with a digesting food effect was taken as the research object, and its chemical composition and action mechanism were explored. METHODS: The chemical constituents of S. salsa were isolated and purified by column chromatography, and their structures were characterized by nuclear magnetic resonance. The food accumulation model in mice was established, and the changes of the aqueous extract of S. salsa in gastric emptying and intestinal propulsion rate, colonic tissue lesions, serum brain-gut peptide hormone, colonic tissue protein expression, and gut microbiota structure were compared. RESULTS: Ten compounds were isolated from S. salsa named as naringenin (1), hesperetin (2), baicalein (3), luteolin (4), isorhamnetin (5), taxifolin (6), isorhamnetin-3-O-ß-D-glucoside (7), luteolin-3'-D-glucuronide (8), luteolin-7-O-ß-D-glucuronide (9), and quercetin-3-O-ß-D-glucuronide (10), respectively. The aqueous extract of S. salsa can improve the pathological changes of the mice colon and intestinal peristalsis by increasing the rate of gastric emptying and intestinal propulsion. By adjusting the levels of 5-HT, CCK, NT, SS, VIP, GT-17, CHE, MTL, and ghrelin, it can upregulate the levels of c-kit, SCF, and GHRL protein, and restore the imbalanced structure of gut microbiota, further achieve the purpose of treating the syndrome of indigestion. The effect is better with the increase of dose. CONCLUSION: S. salsa has a certain therapeutic effect on mice with the syndrome of indigestion. From the perspective of "brain-gut-gut microbiota", the mechanism of digestion and accumulation of S. salsa was discussed for the first time, which provided an experimental basis for further exploring the material basis of S. salsa.

7.
Curr Opin Chem Biol ; 81: 102470, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788523

ABSTRACT

Isonitrile lipopeptides discovered from Actinobacteria have attracted wide attention due to their fascinating biosynthetic pathways and relevance to the virulence of many human pathogens including Mycobacterium tuberculosis. Specifically, the identification of the new class of isonitrile-forming enzymes that belong to non-heme iron (II) and α-ketoglutarate dependent dioxygenases has intrigued several research groups to investigate their catalytic mechanism. Here we summarize the recent studies on the biosynthesis of isonitrile lipopeptides from Streptomyces and Mycobacterium. The latest research on the core and tailoring enzymes involved in the pathway as well as the isonitrile metabolic enzymes are discussed in this review.

8.
Biosens Bioelectron ; 259: 116411, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38781696

ABSTRACT

The carbohydrate antigen 19-9 (CA19-9) is commonly used as a representative biomarker for pancreatic cancer (PC); however, it lacks sensitivity and specificity for early-stage PC diagnosis. Furthermore, some patients with PC are negative for CA19-9 (<37 U/mL), which introduces additional limitations to their accurate diagnosis and treatment. Hence, improved methods to accurately detect PC stages in CA19-9-negative patients are warranted. In this study, tumor-proximal liquid biopsy and inertial microfluidics were coupled to enable high-throughput enrichment of portal venous circulating tumor cells (CTCs) and support the effective diagnosis of patients with early-stage PC. The proposed inertial microfluidic system was shown to provide size-based enrichment of CTCs using inertial focusing and Dean flow effects in slanted spiral channels. Notably, portal venous blood samples were found to have twice the yield of CTCs (21.4 cells per 5 mL) compared with peripheral blood (10.9 CTCs per 5 mL). A combination of peripheral and portal CTC data along with CA19-9 results showed to greatly improve the average accuracy of CA19-9-negative PC patients from 47.1% with regular CA19-9 tests up to 87.1%. Hence, portal venous CTC-based microfluidic biopsy can be used with high sensitivity and specificity for the diagnosis of early-stage PC, particularly in CA19-9-negative patients.


Subject(s)
Biosensing Techniques , CA-19-9 Antigen , Neoplastic Cells, Circulating , Pancreatic Neoplasms , Portal Vein , Humans , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , CA-19-9 Antigen/blood , Biosensing Techniques/instrumentation , Biomarkers, Tumor/blood , Male , Female , Middle Aged , Microfluidic Analytical Techniques/instrumentation , Microfluidics/methods , Liquid Biopsy/methods
9.
Biochem Biophys Res Commun ; 721: 150109, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38762932

ABSTRACT

Wild-type Proteinase K binds to two Ca2+ ions, which play an important role in regulating enzymaticactivity and maintaining protein stability. Therefore, a predetermined concentration of Ca2+ must be added during the use of Proteinase K, which increases its commercial cost. Herein, we addressed this challenge using a computational strategy to engineer a Proteinase K mutant that does not require Ca2+ and exhibits high enzymatic activity and protein stability. In the absence of Ca2+, the best mutant, MT24 (S17W-S176N-D260F), displayed an activity approximately 9.2-fold higher than that of wild-type Proteinase K. It also exhibited excellent protein stability, retaining 56.2 % of its enzymatic activity after storage at 4 °C for 5 days. The residual enzymatic activity was 65-fold higher than that of the wild-type Proteinase K under the same storage conditions. Structural analysis and molecular dynamics simulations suggest that the introduction of new hydrogen bond and π-π stacking at the Ca2+ binding sites due to the mutation may be the reasons for the increased enzymatic activity and stability of MT24.


Subject(s)
Calcium , Endopeptidase K , Enzyme Stability , Molecular Dynamics Simulation , Protein Stability , Endopeptidase K/metabolism , Endopeptidase K/chemistry , Calcium/metabolism , Calcium/chemistry , Computer-Aided Design , Mutation , Binding Sites , Protein Engineering/methods , Protein Conformation
10.
New Phytol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769723

ABSTRACT

Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.

11.
Adv Mater ; : e2400347, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573812

ABSTRACT

Suppressing trap-assisted nonradiative losses through passivators is a prerequisite for efficient perovskite light-emitting diodes (PeLEDs). However, the complex bonding between passivators and perovskites severely suppresses the passivation process, which still lacks comprehensive understanding. Herein, the number, category, and degree of bonds between different functional groups and the perovskite are quantitatively assessed to study the passivation dynamics. Functional groups with high electrostatic potential and large steric hindrance prioritize strong bonding with organic cations and halides on the perfect surface, leading to suppressed coordination with bulky defects. By modulating the binding priorities and coordination capacity, hindrance from the intense interaction with perfect perovskite is significantly reduced, leading to a more direct passivation process. Consequently, the near-infrared PeLED without external light out-coupling demonstrates a record external quantum efficiency of 24.3% at a current density of 42 mA cm-2. In addition, the device exhibits a record-level-cycle ON/OFF switching of 20 000 and ultralong half-lifetime of 1126.3 h under 5 mA cm-2. An in-depth understanding of the passivators can offer new insights into the development of high-performance PeLEDs.

12.
Ren Fail ; 46(1): 2332492, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38584135

ABSTRACT

Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Animals , Humans , Rats , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Apoptosis , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia , Kidney/pathology , Membrane Proteins/metabolism , Mitochondrial Proteins , Mitophagy , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Signal Transduction
13.
Inorg Chem ; 63(15): 6909-6921, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564449

ABSTRACT

The coprecipitation of iron (Fe) and phosphorus (P) in natural environments limits their bioavailability. Plant root-secreted organic acids can dissolve Fe-P precipitates, but the molecular mechanism underlying mobilizing biogenic elements from highly insoluble inorganic minerals remains poorly understood. Here, we investigated vivianite (Fe3(PO4)2·8H2O) dissolution by organic acids (oxalic acid (OA), citric acid (CA), and 2'-dehydroxymugineic acid (DMA)) at three different pH values (4.0, 6.0, and 8.0). With increasing pH, the vivianite dissolution efficiency by OA and CA was decreased while that by DMA was increased, indicating various dissolution mechanisms of different organic acids. Under acidic conditions, weak ligand OA (HC2O4- > C2O42- at pH 4.0 and C2O42- at pH 6.0) dissolved vivianite through the H+ effect to form irregular pits, but under alkaline condition (pH 8.0), the completely deprotonated OA was insufficient to dissolve vivianite. At pH 4.0, CA (H2Cit- > HCit2- > H3Cit) dissolved vivianite to form irregular pits through a proton-promoted mechanism, while at pH 6.0 (HCit2- > Cit3-) and pH 8.0 (Cit3-), CA dissolved vivianite to form near-rhombohedral pits through a ligand-promoted mechanism. At three pH values ((H0)DMA3- > (H1)DMA2- at pH 4.0, (H0)DMA3- at pH 6.0, and (H0)DMA3- and one deprotonated imino at pH 8.0), strong ligand DMA dissolved vivianite to form near-rhombohedral pits via ligand-promoted mechanisms. Raman spectroscopy showed that the deprotonated carboxyl groups (COO-) and imino groups were bound to Fe on the vivianite (010) face. The surface free energy of vivianite coated with OA decreased from 29.32 mJ m-2 to 24.23 mJ m-2 and then to 13.47 mJ m-2 with increasing pH, and that coated with CA resulted in a similar pH-dependent vivianite surface free-energy decrease while that coated with DMA increased the vivianite surface free energy from 31.92 mJ m-2 to 39.26 mJ m-2 and then to 49.93 mJ m-2. Density functional theory (DFT)-based calculations confirmed these findings. Our findings provide insight into the mechanism by which organic acids dissolved vivianite through proton and ligand effects.

14.
Oncogene ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671157

ABSTRACT

The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.

15.
Sci Total Environ ; 929: 172331, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608879

ABSTRACT

The iron oxyhydroxides of iron plaque on the surface of rice root are crucial for the uptake of nutrition elements, especially phosphorus (P), but the effects of iron oxyhydroxides of iron plaque on the accumulation and uptake of P remain largely unknown. In this study, we investigated the regulatory mechanism of iron plaque on P uptake in rice via hydroponics of whole plant and simulation of iron oxyhydroxides-coated suspension cells in rice. The hydroponic experiment results showed that the presence of iron plaque increased the P content in rice shoots. The simulation experiment results further confirmed that after iron plaque coating, the P contents in the whole cell and on the cell wall were significantly increased from 5.16 mg/g and 2.73 mg/g to 8.85 mg/g and 5.27 mg/g, respectively. In addition, our data also showed that iron plaque coating led to an increase in cell surface potentials from -380 ± 40 mV to -200 ± 30 mV, thus promoting the adsorption of more P. Taken together, this study demonstrated that the iron plaque coating increased the surface potential of the cells, thus enhancing cellular P enrichment, eventually promoting P efficient adsorption in rice. Deciphering these regulatory mechanisms provide an insight into P biogeochemical cycling at the soil-plant interface and offer theoretical basis and practical references for the improvement of P bioavailability in rice production.


Subject(s)
Iron , Oryza , Phosphorus , Plant Roots , Oryza/metabolism , Phosphorus/metabolism , Plant Roots/metabolism , Iron/metabolism , Hydroponics
16.
ACS Synth Biol ; 13(5): 1562-1571, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38679882

ABSTRACT

Respirantins are 18-membered antimycin-type depsipeptides produced by Streptomyces sp. and Kitasatospora sp. These compounds have shown extraordinary anticancer activities against a panel of cancer cell lines with nanomolar levels of IC50 values. However, further investigation has been impeded by the low titers of the natural producers and the challenging chemical synthesis due to their structural complexity. The biosynthetic gene cluster (BGC) of respirantin was previously proposed based on a bioinformatic comparison of the four members of antimycin-type depsipeptides. In this study, we report the first successful reconstitution of respirantin in Streptomyces albus using a synthetic BGC. This heterologous system serves as an accessible platform for the production and diversification of respirantins. Through polyketide synthase pathway engineering, biocatalysis, and chemical derivatization, we generated nine respirantin compounds, including six new derivatives. Cytotoxicity screening against human MCF-7 and Hela cancer cell lines revealed a unique biphasic dose-response profile of respirantin. Furthermore, a structure-activity relationship study has elucidated the essential functional groups that contribute to its remarkable cytotoxicity. This work paves the way for respirantin-based anticancer drug discovery and development.


Subject(s)
Antimycin A , Antineoplastic Agents , Depsipeptides , Multigene Family , Streptomyces , Humans , Streptomyces/metabolism , Streptomyces/genetics , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/biosynthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/chemistry , HeLa Cells , Antimycin A/analogs & derivatives , Antimycin A/pharmacology , Antimycin A/metabolism , MCF-7 Cells , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Biosynthetic Pathways/genetics , Structure-Activity Relationship
17.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618249

ABSTRACT

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

18.
Int J Surg ; 110(4): 1896-1903, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38668654

ABSTRACT

BACKGROUND: It is unclear whether laparoscopic hepatectomy (LH) for hepatolithiasis confers better clinical benefit and lower hospital costs than open hepatectomy (OH). This study aim to evaluate the clinical and economic value of LH versus OH. METHODS: Patients undergoing OH or LH for primary hepatolithiasis at Yijishan Hospital of Wannan Medical College between 2015 and 2022 were divided into OH group and LH group. Propensity score matching (PSM) was used to balance the baseline data. Deviation-based cost modelling and weighted average median cost (WAMC) were used to assess and compare the economic value. RESULTS: A total of 853 patients were identified. After exclusions, 403 patients with primary hepatolithiasis underwent anatomical hepatectomy (OH n=143; LH n=260). PSM resulted in 2 groups of 100 patients each. Although LH required a longer median operation duration compared with OH (285.0 versus 240.0 min, respectively, P<0.001), LH patients had fewer wound infections, fewer pre-discharge overall complications (26 versus 43%, respectively, P=0.009), and shorter median postoperative hospital stays (8.0 versus 12.0 days, respectively, P<0.001). No differences were found in blood loss, major complications, stone clearance, and mortality between the two matched groups. However, the median overall hospital cost of LH was significantly higher than that of OH (CNY¥52,196.1 versus 45,349.5, respectively, P=0.007). Although LH patients had shorter median postoperative hospital stays and fewer complications than OH patients, the WAMC was still higher for the LH group than for the OH group with an increase of CNY¥9,755.2 per patient undergoing LH. CONCLUSION: The overall clinical benefit of LH for hepatolithiasis is comparable or even superior to that of OH, but with an economic disadvantage. There is a need to effectively reduce the hospital costs of LH and the gap between costs and diagnosis-related group reimbursement to promote its adoption.


Subject(s)
Hepatectomy , Laparoscopy , Propensity Score , Humans , Hepatectomy/economics , Hepatectomy/methods , Female , Male , Laparoscopy/economics , Laparoscopy/methods , Middle Aged , Adult , Retrospective Studies , Liver Diseases/surgery , Liver Diseases/economics , Cohort Studies , Aged , Lithiasis/surgery , Lithiasis/economics , Length of Stay/economics , Length of Stay/statistics & numerical data , Postoperative Complications/economics , Treatment Outcome
19.
Biochem Biophys Res Commun ; 707: 149513, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38508051

ABSTRACT

Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.


Subject(s)
Neoplasms , Receptors, Purinergic P2X7 , Tumor Microenvironment , Humans , Neoplasms/metabolism , Receptors, Purinergic P2X7/metabolism , Animals
20.
Phys Chem Chem Phys ; 26(14): 10520-10529, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512292

ABSTRACT

In this paper we investigate the relationship between the conductivity effective mass and exfoliation energy of materials to assess whether automatic sampling of the electron band structure can predict the presence of and ease of separating chemically bonded layers. We assess 22 976 materials from the Materials Project database, screen for only those that are thermodynamically stable and identify the 1000 materials with the highest standard deviation for p-type and the 1000 materials with the highest standard deviation for n-type internal conductivity effective mass tensors. We calculate the exfoliation energy of these 2000 materials and report on the correlation between effective mass and exfoliation energy. A relationship is found which is used to identify a previously unconsidered two-dimensional material and could streamline the modelling of other two-dimensional materials in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...