Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 895
Filter
1.
Phys Med Biol ; 69(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38959904

ABSTRACT

Functional nanomaterials have emerged as versatile nanotransducers for wireless neural modulation because of their minimal invasion and high spatiotemporal resolution. The nanotransducers can convert external excitation sources (e.g. NIR light, x-rays, and magnetic fields) to visible light (or local heat) to activate optogenetic opsins and thermosensitive ion channels for neuromodulation. The present review provides insights into the fundamentals of the mostly used functional nanomaterials in wireless neuromodulation including upconversion nanoparticles, nanoscintillators, and magnetic nanoparticles. We further discussed the recent developments in design strategies of functional nanomaterials with enhanced energy conversion performance that have greatly expanded the field of neuromodulation. We summarized the applications of functional nanomaterials-mediated wireless neuromodulation techniques, including exciting/silencing neurons, modulating brain activity, controlling motor behaviors, and regulating peripheral organ function in mice. Finally, we discussed some key considerations in functional nanotransducer-mediated wireless neuromodulation along with the current challenges and future directions.


Subject(s)
Wireless Technology , Animals , Humans , Optogenetics/methods , Neurons , Nanostructures , Nanotechnology/methods , Nanotechnology/instrumentation
2.
Environ Sci Technol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980177

ABSTRACT

There has been widespread concern about the health hazards of per- and polyfluoroalkyl substances (PFAS), which may be the risk factor for hyperuricemia with evidence still insufficient in the general population in China. Here, we conducted a nationwide study involving 9,580 adults aged 18 years or older from 2017 to 2018, measured serum concentrations of uric acid and PFAS (PFOA, PFOS, 6:2 Cl-PFESA, PFNA, PFHxS) in participants, to assess the associations of individual PFAS with hyperuricemia, and estimated a joint effect of PFAS mixtures. We found positive associations of higher serum PFAS with elevated odds of hyperuricemia in Chinese adults, with the greatest contribution from PFOA (69.37%). The nonmonotonic dose-response (NMDR) relationships were observed for 6:2 Cl-PFESA and PFHxS with hyperuricemia. Participants with less marine fish consumption, overweight, and obesity may be the sensitive groups to the effects of PFAS on hyperuricemia. We highlight the potential health hazards of legacy long-chain PFAS (PFOA) once again because of the higher weights of joint effects. This study also provides more evidence about the NMDR relationships in PFAS with hyperuricemia and emphasizes a theoretical basis for public health planning to reduce the health hazards of PFAS in sensitive groups.

3.
J Transl Med ; 22(1): 641, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982548

ABSTRACT

BACKGROUND: Trastuzumab and pertuzumab combination has been approved for the treatment of patients with HER2-positive metastatic breast cancer. However, trastuzumab and pertuzumab combination did not show improvement in overall survival in patients with HER2-positive metastatic gastric cancer. METHODS: We developed a new HER2-targeted monoclonal antibody, HLX22, targeting HER2 subdomain IV as trastuzumab but with non-overlapping epitopes. We examined the antitumor effects of this novel HER2-antibody in gastric cell lines and cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. RESULTS: HLX22 in combination with HLX02 (trastuzumab biosimilar) induced enhancement of HER2/HER2 homodimers and HER2/EGFR heterodimers internalization, which ultimately led to the reduction in signal transductions involving STAT3, P70 S6, and AKT; gene expressions of FGF-FGFR-PI3K-MTOR, EGF-EGFR-RAS, TGF-ß-SMAD, PLCG and cell cycle progression related pathways that favor tumor development, proliferation, progression, migration and survival in gastric cancer cell line NCI-N87 were also reduced. These differing but complementary actions contributed to the synergistic antitumor efficacy of the HLX22 and HLX02 combination in gastric cancer cell lines, CDX and PDX. In addition, HLX22 in combination with HLX02 demonstrated stronger antitumor efficacy than HLX02 and HLX11 (a potential pertuzumab biosimilar) combination treatment both in vitro and in vivo. CONCLUSIONS: These results suggested that the application of non-competing antibodies HLX22 and HLX02 targeting HER2 subdomain IV together may be of substantial benefit to gastric cancer patients who currently respond suboptimal to trastuzumab therapy.


Subject(s)
Epitopes , ErbB Receptors , Receptor, ErbB-2 , Stomach Neoplasms , Xenograft Model Antitumor Assays , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Animals , ErbB Receptors/metabolism , Protein Multimerization/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Protein Domains , Female , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Chin J Cancer Res ; 36(3): 298-305, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988482

ABSTRACT

Objective: Nucleotide excision repair (NER) plays a vital role in maintaining genome stability, and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation. This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children. Methods: In this five-center case-control study, we enrolled 966 subjects from East China (193 hepatoblastoma patients and 773 healthy controls). The TaqMan method was used to genotype 19 single nucleotide polymorphisms (SNPs) in NER pathway genes, including ERCC1, XPA, XPC, XPD, XPF, and XPG. Then, multivariate logistic regression analysis was performed, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized to assess the strength of associations. Results: Three SNPs were related to hepatoblastoma risk. XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model (adjusted OR=1.49, 95% CI=1.07-2.08, P=0.019; adjusted OR=1.66, 95% CI=1.12-2.45, P=0.012, respectively). However, XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model (adjusted OR=0.68, 95% CI=0.49-0.95; P=0.024). Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups. Moreover, there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci (eQTLs) and splicing quantitative trait loci (sQTLs) analysis. Conclusions: In summary, NER pathway gene polymorphisms (XPC rs2229090, XPD rs3810366, and XPD rs238406) are significantly associated with hepatoblastoma risk, and further research is required to verify these findings.

5.
Indian J Ophthalmol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990612

ABSTRACT

PURPOSE: To quantitatively investigate the reflectivity and structure of the outer retinal layers in children with hyperopic anisometropic amblyopia by using swept-source optical coherence tomography (SS-OCT). METHODS: Seventy-eight patients with amblyopia and 64 age-matched children with normal vision were included in this study. All participants underwent SS-OCT and detailed ophthalmic examinations. Longitudinal reflectance profile measurements were measured using Image J. The reflectivity of outer retinal layers was measured at the three selected positions: subfovea, 1 mm nasal to the fovea, and 1 mm temporal to the fovea. The reflectivity ratios were calculated by outer retinal layers divided by the nuclear layer (ONL) for normalization. Photoreceptor outer segment layer thickness was also measured. The results were compared between the amblyopia and normal controls. The possible effects of age, sex, and axial length on results were adjusted by generalized estimating equations. RESULTS: Photoreceptor outer segment layer thickness was significantly greater in amblyopic eyes than in normal control eyes at all three regions (18.41 ± 1.83 vs. 16.84 ± 1.39, P < 0.001 at the fovea; 14.78 ± 1.34 vs. 14.19 ± 1.40, P = 0.030 at 1 mm nasal to the foveal; 14.92 ± 1.48 vs. 14.41 ± 1.32, P = 0.049 at 1 mm temporal to the fovea). The reflectivity ratio of outer segment/ONL was higher only at 1 mm nasal to the fovea (2.94 ± 0.61 vs. 2.70 ± 0.42, P = 0.02). Subfoveal OS thickness was positively correlated with choroidal thickness (r = 0.248, P = 0.018) but was not correlated with spherical equivalent, age, axial length, or logMAR visual acuity. CONCLUSION: Quantitative measurement of SS-OCT images revealed greater photoreceptor outer segments in both eyes of children with amblyopia than in normal control eyes. A thicker OS thickness is somehow related to amblyopia, and this may be a new useful diagnostic parameter for amblyopia.

6.
Hypertension ; 81(8): 1799-1810, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853753

ABSTRACT

BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substance (PFAS) has endocrine-disrupting properties and may affect blood pressure. Endogenous hormones also play a crucial role in the progression of hypertension. However, their interaction with hypertension remains to be explored. METHODS: This study included 10 794 adults aged ≥18 years from the China National Human Biomonitoring program. Weighted multiple logistic regression and linear regression were used to examine the associations of serum PFAS with hypertension, diastolic blood pressure, and systolic blood pressure. Joint effects of PFAS mixtures on hypertension, diastolic blood pressure, and systolic blood pressure were evaluated using quantile-based g-computation. Additive and multiplicative interactions were used to assess the role of PFAS with testosterone and estradiol on hypertension. RESULTS: The prevalence of hypertension in Chinese adults was 35.50%. Comparing the fourth quartile with the first quartile, odds ratio (95% CI) of hypertension were 1.53 (1.13-2.09) for perfluorononanoic acid, 1.40 (1.03-1.91) for perfluorodecanoic acid, 1.34 (1.02-1.78) for perfluoroheptane sulfonic acid, and 1.46 (1.07-1.99) for perfluorooctane sulfonic acid. Moreover, PFAS mixtures, with perfluorononanoic acid contributing the most, were positively associated with hypertension, diastolic blood pressure, and systolic blood pressure. PFAS and endogenous hormones had an antagonistic interaction in hypertension. For example, the relative excess risk ratio, attributable proportion, and synergy index for perfluorononanoic acid and estradiol were -3.61 (-4.68 to -2.53), -1.65 (-2.59 to -0.71), and 0.25 (0.13-0.47), respectively. CONCLUSIONS: Perfluorononanoic acid, perfluorodecanoic acid, perfluoroheptane sulfonic acid, perfluorooctane sulfonic acid, and PFAS mixtures showed positive associations with hypertension, systolic blood pressure, and diastolic blood pressure. Positive associations of PFAS with hypertension might be attenuated by increased levels of endogenous sex hormones.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Hypertension , Humans , Fluorocarbons/blood , Female , Hypertension/epidemiology , Hypertension/blood , Male , Cross-Sectional Studies , China/epidemiology , Middle Aged , Adult , Alkanesulfonic Acids/blood , Blood Pressure/drug effects , Blood Pressure/physiology , Environmental Exposure/adverse effects , Decanoic Acids/blood , Endocrine Disruptors/blood , Endocrine Disruptors/adverse effects , Fatty Acids/blood , Prevalence , Gonadal Steroid Hormones/blood , Sulfonic Acids/blood , Environmental Pollutants/blood , Environmental Pollutants/adverse effects , Lauric Acids/blood , Lauric Acids/pharmacology
7.
Int J Nanomedicine ; 19: 5173-5191, 2024.
Article in English | MEDLINE | ID: mdl-38855733

ABSTRACT

Purpose: Acne vulgaris is a chronic inflammatory skin disorder centered on hair follicles, making hair follicle-targeted delivery of anti-acne drugs a promising option for acne treatment. However, current researches have only focused on the delivering to healthy hair follicles, which are intrinsically different from pathologically clogged hair follicles in acne vulgaris. Patients and Methods: Azelaic acid (AZA) micro/nanocrystals with different particle sizes were prepared by wet media milling or high-pressure homogenization. An experiment on AZA micro/nanocrystals delivering to healthy hair follicles was carried out, with and without the use of physical enhancement techniques. More importantly, it innovatively designed an experiment, which could reveal the ability of AZA micro/nanocrystals to penetrate the constructed clogged hair follicles. The anti-inflammatory and antibacterial effects of AZA micro/nanocrystals were evaluated in vitro using a RAW264.7 cell model stimulated by lipopolysaccharide and a Cutibacterium acnes model. Finally, both the anti-acne effects and skin safety of AZA micro/nanocrystals and commercial products were compared in vivo. Results: In comparison to commercial products, 200 nm and 500 nm AZA micro/nanocrystals exhibited an increased capacity to target hair follicles. In the combination group of AZA micro/nanocrystals and ultrasound, the ability to penetrate hair follicles was further remarkably enhanced (ER value up to 9.6). However, toward the clogged hair follicles, AZA micro/nanocrystals cannot easily penetrate into by themselves. Only with the help of 1% salicylic acid, AZA micro/nanocrystals had a great potential to penetrate clogged hair follicle. It was also shown that AZA micro/nanocrystals had anti-inflammatory and antibacterial effects by inhibiting pro-inflammatory factors and Cutibacterium acnes. Compared with commercial products, the combination of AZA micro/nanocrystals and ultrasound exhibited an obvious advantage in both skin safety and in vivo anti-acne therapeutic efficacy. Conclusion: Hair follicle-targeted delivery of AZA micro/nanocrystals provided a satisfactory alternative in promoting the treatment of acne vulgaris.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Dicarboxylic Acids , Hair Follicle , Nanoparticles , Acne Vulgaris/drug therapy , Animals , Mice , Dicarboxylic Acids/chemistry , Dicarboxylic Acids/pharmacology , Hair Follicle/drug effects , RAW 264.7 Cells , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Particle Size , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Drug Delivery Systems/methods , Skin/drug effects , Skin/metabolism
8.
Small ; : e2402915, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845481

ABSTRACT

The bismuth anode has garnered significant attention due to its high theoretical Na-storage capacity (386 mAh g-1). There have been numerous research reports on the stable solid electrolyte interphase (SEI) facilitated by electrolytes utilizing ether solvents. In this contribution, cyclic tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MeTHF) ethers are employed as solvents to investigate the sodium-ion storage properties of bismuth anodes. A series of detailed characterizations are utilized to analyze the impact of electrolyte solvation structure and SEI chemical composition on the kinetics of sodium-ion storage. The findings reveal that bismuth anodes in both THF and MeTHF-based electrolytes exhibit exceptional rate performance at low current densities, but in THF-based electrolytes, the reversible capacity is higher at high current densities (316.7 mAh g-1 in THF compared to 9.7 mAh g-1 in MeTHF at 50 A g-1). This stark difference is attributed to the formation of an inorganic-rich, thin, and uniform SEI derived from THF-based electrolyte. Although the SEI derived from MeTHF-based electrolyte also consists predominantly of inorganic components, it is thicker and contains more organic species compared to the THF-derived SEI, impeding charge transfer and ion diffusion. This study offers valuable insights into the utilization of cyclic ether electrolytes for Na-ion batteries.

9.
J Control Release ; 372: 69-84, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38866244

ABSTRACT

Transcytosis-inducing nanomedicines have been developed to improve tumor extravasation. However, the fate during transcytosis across multicell layers and the structural integrity of the nanomedicines before reaching tumor cells could impact antitumor therapy. Here, a BAY 87-2243 (a hypoxia-inducible factor-1 inhibitor)-loaded liposomal system (HA-P-LBAY) modified by low molecular weight protamine (LMWP) and crosslinked by hyaluronic acid (HA) was constructed. This system could accomplish differentiate cellular transport in endothelial and tumor cells by fine-tuning its structural integrity, i.e. transcytosis across the endothelial cells while preserving structural integrity, facilitating subsequent retention and drug release within tumor cells via degradation-induced aggregation. In vitro cellular uptake and transwell studies demonstrated that HA-P-LBAY were internalized by endothelial cells (bEnd.3) via an active, caveolin and heparin sulfate proteoglycan (HSPG)-mediated endocytosis, and subsequently achieved transcytosis mainly through the ER/Golgi pathway. Moreover, the fluorescence resonance energy transfer (FRET) study showed that HA-crosslinking maintained higher integrity of HA-P-LBAY after transcytosis, more efficiently than electrostatic coating of HA (HA/P-LBAY). In addition, more HA-P-LBAY was retained in tumor cells (4T1) compared to HA/P-LBAY corresponding to its enhanced in vitro cytotoxicity. This may be attributed to better integrity of HA-P-LBAY post endothelial transcytosis and more degradation of HA in tumor cells, leading to more liposome aggregation and inhibition of their transcytosis, which was inferred by both TEM images and the HAase responsiveness assay proved by FRET. In vivo, HA-P-LBAY exhibited more potency in tumor suppression than the other formulations in both low and high permeability tumor models. This highlighted that fine-tuning of structural integrity of nanocarriers played a key role no matter whether the transcytosis of nanocarriers contributed to cellular transport. Collectively, this study provides a promising strategy for antitumor therapies by fine-tuning liposome integrity to achieve active trans-endothelial transport with structural integrity and selective aggregation for prolonged tumor retention.

10.
Trends Genet ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38902139

ABSTRACT

An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.

11.
Plant Physiol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917225

ABSTRACT

Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to non-plant systems. Here, we conducted in situ S1-seq (ISS1-seq), with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic-region-dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of TEs (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.

12.
Enzyme Microb Technol ; 179: 110465, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38852283

ABSTRACT

Enzymatic production of D-mannose attracts increasing attention because of the health effects and commercial values of D-mannose. Several kinds of epimerases or isomerases have been used for enzymatic production of D-mannose from D-glucose or D-fructose. D-Mannose epimerase (MEase), belonging to N-acyl-D-glucosamine 2-epimerase superfamily enzymes, catalyzes the C-2 epimerization between D-glucose and D-mannose. In this study, a novel MEase was identified from Cytophagaceae bacterium SJW1-29. Sequence and structure alignments indicate that it is highly conserved with the reported R. slithyformis MEase with the known crystal structure. It was a metal-independent enzyme, with an optimal pH of 8.0 and an optimal temperature of 40 °C. The specific activities on D-glucose and D-mannose were 2.90 and 2.96 U/mg, respectively. The Km, kcat, and kcat/Km on D-glucose were measured to be 194.9 mM, 2.72 s-1, and 0.014 mM-1 s-1, respectively. The purified enzyme produced 23.15 g/L of D-mannose from 100 g/L of D-glucose at pH 8.0 and 40 °C for 8 h, with a conversion rate of 23.15 %.

13.
Chin Med J (Engl) ; 137(13): 1603-1613, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38844445

ABSTRACT

BACKGROUND: Although significant advances have been made in the treatment of multiple myeloma (MM), leading to unprecedented response and survival rates among patients, the majority eventually relapse, and a cure remains elusive. This situation is closely related to an incomplete understanding of the immune microenvironment, especially monocytes/macrophages in patients with treatment-naïve MM. The aim of this study was to provide insight into the immune microenvironment, especially monocytes/macrophages, in patients with treatment-naïve MM. METHODS: This study used the single-cell RNA sequencing (scRNA-seq) data of both patients with MM and heathy donors to identify immune cells, including natural killer (NK) cells, T cells, dendritic cells (DCs), and monocytes/macrophages. Transcriptomic data and flow cytometry analysis of monocytes/macrophages were used to further examine the effect of monocytes/macrophages in treatment-naïve MM patients. RESULTS: A significant difference was observed between the bone marrow (BM) immune cells of the healthy controls and treatment-naïve MM patients through scRNA-seq. It is noteworthy that, through an scRNA-seq data analysis, this study found that interferon (IFN)-induced NK/T cells, terminally differentiated effector memory (TEMRA) cells, T-helper cells characterized by expression of IFN-stimulated genes (ISG + Th cells), IFN-responding exhausted T cells, mannose receptor C-type 1 (MRC1) + DCs, IFN-responding DCs, MHCII + DCs, and immunosuppressive monocytes/macrophages were enriched in patients with treatment-naïve MM. Significantly, transcriptomic data of monocytes/macrophages demonstrated that "don't eat me"-related genes and IFN-induced genes increase in treatment-naïve MM patients. Furthermore, scRNA-seq, transcriptomic data, and flow cytometry also showed an increased proportion of CD16 + monocytes/macrophages and expression level of CD16. Cell-cell communication analysis indicated that monocytes/macrophages, whose related important signaling pathways include migration inhibitory factor (MIF) and interleukin 16 (IL-16) signaling pathway, are key players in treatment-naïve MM patients. CONCLUSIONS: Our findings provide a comprehensive and in-depth molecular characterization of BM immune cell census in MM patients, especially for monocytes/macrophages. Targeting macrophages may be a novel treatment strategy for patients with MM.


Subject(s)
Dendritic Cells , Macrophages , Multiple Myeloma , Humans , Multiple Myeloma/immunology , Multiple Myeloma/genetics , Dendritic Cells/immunology , Macrophages/immunology , Macrophages/metabolism , Killer Cells, Natural/immunology , Monocytes/immunology , T-Lymphocytes/immunology
14.
Neuropharmacology ; 257: 110049, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901641

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D), a chronic metabolic disease, occurs brain dysfunction accompanied with neuroinflammation and metabolic disorders. The neuroprotective effects of the basic fibroblast growth factor (bFGF) have been well studied. However, the mechanism underlying the anti-inflammatory effects of bFGF remains elusive. METHODS: In this study, db/db mice were employed as an in vivo model, while high glucose (HG)-induced SY5Y cells and LPS-induced BV2 cells were used as in vitro models. Liposomal transfection of MyD88 DNA plasmid was used for MyD88-NF-κB pathway studies. And western blotting, flow cytometry and qPCR were employed. 1H-NMR metabolomics was used to find out metabolic changes. RESULTS: bFGF mitigated neuroinflammatory and metabolic disorders by inhibiting cortical inflammatory factor secretion and microglia hyperactivation in the cortex of db/db mice. Also, bFGF was observed to inhibit the MyD88-NF-κB pathway in high glucose (HG)-induced SY5Y cells and LPS-induced BV2 cells in in vitro experiments. Moreover, the 1H-NMR metabolomics results showed that discernible disparities between the cortical metabolic profiles of bFGF-treated db/db mice and their untreated counterparts. Notably, excessive lactate and choline deficiency attenuated the anti-inflammatory protective effect of bFGF in SY5Y cells. CONCLUSION: bFGF ameliorates neuroinflammation in db/db mice by inhibiting the MyD88-NF-kB pathway. This finding expands the potential application of bFGF in the treatment of neuroinflammation-related cognitive dysfunction.

15.
EBioMedicine ; 105: 105219, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38941955

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking. METHODS: We screened fourteen patient-derived PDAC cultures which reflect the intra- and intertumoural heterogeneity of PDAC for their sensitivity to five clinically relevant OVs, namely serotype 5 adenovirus Ad5-hTERT, herpes virus T-VEC, measles vaccine strain MV-NIS, reovirus jin-3, and protoparvovirus H-1PV. Live cell analysis, quantification of viral genome/gene expression, cell viability as well as cytotoxicity assays and titration of viral progeny were conducted. Transcriptome profiling was employed to identify potential predictive biomarkers for response to OV treatment. FINDINGS: Patient-derived PDAC cultures showed individual response patterns to OV treatment. Twelve of fourteen cultures were responsive to at least one OV, with no single OV proving superior or inferior across all cultures. Known host factors for distinct viruses were retrieved as potential biomarkers. Compared to the classical molecular subtype, the quasi-mesenchymal or basal-like subtype of PDAC was found to be more sensitive to H-1PV, jin-3, and T-VEC. Generally, expression of viral entry receptors did not correlate with sensitivity to OV treatment, with one exception: Expression of Galectin-1 (LGALS1), a factor involved in H-1PV entry, positively correlated with H-1PV induced cell killing. Rather, cellular pathways controlling immunological, metabolic and proliferative signaling appeared to determine outcome. For instance, high baseline expression of interferon-stimulated genes (ISGs) correlated with relative resistance to oncolytic measles virus, whereas low cyclic GMP-AMP synthase (cGAS) expression was associated with exceptional response. Combination treatment of MV-NIS with a cGAS inhibitor improved tumour cell killing in several PDAC cultures and cells overexpressing cGAS were found to be less sensitive to MV oncolysis. INTERPRETATION: Considering the heterogeneity of PDAC and the complexity of biological therapies such as OVs, no single biomarker can explain the spectrum of response patterns. For selection of a particular OV, PDAC molecular subtype, ISG expression as well as activation of distinct signaling and metabolic pathways should be considered. Combination therapies can overcome resistance in specific constellations. Overall, oncolytic virotherapy is a viable treatment option for PDAC, which warrants further development. This study highlights the need for personalised treatment in OVT. By providing all primary data, this study provides a rich source and guidance for ongoing developments. FUNDING: German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG), German Cancer Aid (Deutsche Krebshilfe), German National Academic Scholarship Foundation (Studienstiftung des deutschen Volkes), Survival with Pancreatic Cancer Foundation.


Subject(s)
Biomarkers, Tumor , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Humans , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Profiling , Cell Line, Tumor , Cell Survival , Tumor Cells, Cultured
16.
J Colloid Interface Sci ; 672: 401-414, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850865

ABSTRACT

Crafting an inorganic semiconductor heterojunction with defect engineering and morphology modulation is a strategic approach to produce clean energy by the highly efficient light-driven splitting of water. In this paper, a novel Z-scheme sulfur-vacancy containing Zn3In2S6 (Vs-Zn3In2S6) nanosheets/In2O3 hollow hexagonal prisms heterostructrue (Vs-ZIS6INO) was firstly constructed by an oil bath method, in which Vs-Zn3In2S6 nanosheets grew on the surfaces of In2O3 hollow hexagonal prisms to form a hollow core-shell structure. The obtained Vs-ZIS6INO heterostructrue exhibited much enhanced activity of the production of H2 and H2O2 by the light-driven water splitting. In particular, under visible light irradiation (λ > 420 nm), the rate of generation of H2 of Vs-ZIS6INO sample containing 30 wt% Vs-Zn3In2S6 (30Vs-ZIS6INO) could reach 3721 µmol g-1h-1, which was 87 and 6 times higher than those of Zn3In2S6 (43 µmol g-1h-1) and Vs-Zn3In2S6 (586 µmol g-1h-1), respectively. Meanwhile, 30Vs-ZIS6INO could exhibit the rate of H2O2 production of 483 µmol g-1h-1 through the dual pathways of indirect 2e- oxygen reduction (ORR) and water oxidation (WOR) without adding any sacrifice agents, far exceeding In2O3 (7 µmol g-1h-1) and Vs-Zn3In2S6 (58 µmol g-1h-1). The excellent photocatalytic activities of H2 and H2O2 generations of Vs-ZIS6INO sample might result from the synergistic effect of the sulfur vacancy, hollow core-shell structure, and Z-scheme heterostructure, which accelerated the electron delocalization, enhanced the absorption and conversion of solar energy, reduced the carrier diffusion distance, and ensured high REDOX ability. In addition, the possible photocatalytic mechanisms for the production of H2 and H2O2 were discussed in detail. This study provided a new idea and reference for constructing the novel and efficient inorganic semiconductor heterostructures by coordinating vacancy defect and morphology design to adequately utilize water splitting for the production of clean energy.

17.
Article in English | MEDLINE | ID: mdl-38889027

ABSTRACT

The ICU is a specialized hospital department that offers critical care to patients at high risk. The massive burden of ICU-requiring care requires accurate and timely ICU outcome predictions for alleviating the economic and healthcare burdens imposed by critical care needs. Existing research faces challenges such as feature extraction difficulties, low accuracy, and resource-intensive features. Some studies have explored deep learning models that utilize raw clinical inputs. However, these models are considered non-interpretable black boxes, which prevents their wide application. The objective of the study is to develop a new method using stochastic signal analysis and machine learning techniques to effectively extract features with strong predictive power from ICU patients' real-time time series of vital signs for accurate and timely ICU outcome prediction. The results show the proposed method extracted meaningful features and outperforms baseline methods, including APACHE IV (AUC = 0.750), deep learning-based models (AUC = 0.732, 0.712, 0.698, 0.722), and statistical feature classification methods (AUC = 0.765) by a large margin (AUC = 0.869). The proposed method has clinical, management, and administrative implications since it enables healthcare professionals to identify deviations from prognostications timely and accurately and, therefore, to conduct proper interventions.

18.
Angew Chem Int Ed Engl ; : e202403919, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794786

ABSTRACT

Functional liquid-based interfaces, with their inhomogeneous regions that emphasize the functionalized liquids, have attracted much interest as a versatile platform for a broad spectrum of applications, from chemical manufacturing to practical uses. These interfaces leverage the physicochemical characteristics of liquids, alongside dynamic behaviors induced by macroscopic wettability and microscopic molecular exchange balance, to allow for tailored properties within their functional structures. In this Minireview, we provide a foundational overview of these functional interfaces, based on the structural investigations and molecular mechanisms of interaction forces that directly modulate functionalities. Then, we discuss design strategies that have been employed in recent applications, and the crucial aspects that require focus. Finally, we highlight the current challenges in functional liquid-based interfaces and provide a perspective on future research directions.

19.
J Hazard Mater ; 473: 134645, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762989

ABSTRACT

While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.


Subject(s)
Diabetes Mellitus , Fluorocarbons , Prediabetic State , Seafood , Humans , Seafood/analysis , Prediabetic State/epidemiology , Prediabetic State/blood , Male , Cross-Sectional Studies , Middle Aged , Female , Adult , China/epidemiology , Fluorocarbons/blood , Diabetes Mellitus/epidemiology , Food Contamination/analysis , Aged , Diet , Young Adult
20.
Microbiol Res ; 285: 127783, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795407

ABSTRACT

The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Signal Transduction , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Phosphorylation , Virulence , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Biosensing Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...