Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
J Environ Sci (China) ; 145: 117-127, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844312

ABSTRACT

Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.


Subject(s)
Astrocytes , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Lysosomal-Associated Membrane Protein 2 , Lysosomes , Mice, Inbred ICR , Particulate Matter , alpha-Synuclein , Animals , Astrocytes/drug effects , alpha-Synuclein/metabolism , Autophagy/drug effects , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Particulate Matter/toxicity , Air Pollutants/toxicity
2.
Front Surg ; 11: 1354994, 2024.
Article in English | MEDLINE | ID: mdl-38752128

ABSTRACT

Objective: This study aimed to investigate the clinical manifestations and prognosis of lung transplant (LTx) recipients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the coronavirus disease (COVID-19) pandemic. Methods: The research participants were LTx recipients who underwent surgery and were regularly followed up at our center. From 1 December 2022 to 28 February 2023, during the COVID-19 pandemic in China, research participants were interviewed either online or in person. SARS-CoV-2 nucleic acid or self-tested antigens were detected according to accessibility. Diagnosis and treatment were performed according to the Diagnosis and Treatment Plan for COVID-19 (10th edition) issued by the National Health Commission of the People's Republic of China. Hospitalized patients underwent chest imaging examinations, routine blood tests, biomarkers for infection and inflammation, and biochemical tests, all of which were taken and recorded. Data were analyzed to describe the features of COVID-19 in LTx recipients. Results: In total, 52 patients were enrolled in this study, comprising 48 men and 4 women, with a mean age of 51.71 ± 11.67 years. By 1 December 2022, the mean survival period was 33.87 ± 25.97 months, of which 84.61% of the patients (44/52) had a survival period longer than 12 months. The SARS-CoV-2 infection rate in these LTx recipients was 82.69% (43/52), with 3.85% (2/52) of the infected recipients being asymptomatic, 50.00% (26/52) of the infected recipients experiencing mild COVID-19, 11.54% (6/52) having moderate COVID-19, and 17.31% (9/52) having severe or critical COVID-19. The mortality rate among severe and critical patients was 66.67% (6/9). Conclusion: LTx recipients in this cohort exhibited a notable susceptibility to SARS-CoV-2, with 82.69% of individuals diagnosed with COVID-19. Moreover, the mortality rate among critically ill patients was high.

3.
Front Oncol ; 14: 1397246, 2024.
Article in English | MEDLINE | ID: mdl-38800393

ABSTRACT

Background: Newly identified as a radiological concept, interstitial lung abnormalities (ILA) is emerging as a prognostic factor for lung cancer. Yet, debates persist regarding the prognostic significance of ILA in lung cancer. Our inaugural meta-analysis aimed to investigate the correlation between ILA and lung cancer outcomes, offering additional insights for clinicians in predicting patient prognosis. Methods: Articles meeting the criteria were found through PubMed, the Cochrane Library, EMBASE, and Web of Science by February 29, 2024. The outcomes evaluated were the survival rates such as overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and cancer-specific survival (CSS). Results: A total of 12 articles with 4416 patients were included in this meta-analysis. The pooled results showed that lung cancer patients with interstitial lung abnormalities had an inferior OS (n=11; HR=2.22; 95% CI=1.68-2.95; P<0.001; I2 = 72.0%; Ph<0.001), PFS (n=3; HR=1.59; 95% CI=1.08-2.32; P=0.017; I2 = 0%; Ph=0.772), and CSS (n=2; HR=4.00; 95% CI=1.94-8.25; P<0.001; I2 = 0%; Ph=0.594) than those without, however, the ILA was not significantly associated with the DFS (n=2; HR=2.07; 95% CI=0.94-7.02; P=0.066; I2 = 90.4%; Ph=0.001). Moreover, lung cancer patients with ILA were significantly correlated with male (OR=2.43; 95% CI=1.48-3.98; P<0.001), smoking history (OR=2.11; 95% CI=1.37-3.25; P<0.001), advanced age (OR=2.50; 95% CI=1.56-4.03; P<0.001), squamous carcinoma (OR=0.42; 95% CI=0.24-0.71; P=0.01), and EGFR mutation (OR=0.50; 95% CI=0.32-0.78; P=0.002). The correlation between ILA and race, stage, ALK, however, was not significant. Conclusion: ILA was a availability factors of prognosis in patients with lung cancers. These findings highlight the importance of early pulmonary fibrosis, namely ILA for prognosis in patients with lung cancer, and provide a partial rationale for future clinical work.

4.
Front Microbiol ; 15: 1361945, 2024.
Article in English | MEDLINE | ID: mdl-38646621

ABSTRACT

Objective: Probiotics are beneficial to the intestinal barrier, but few studies have investigated probiotics from giant pandas. This study aims to explore the preventive effects of giant panda-derived Clostridium butyricum on dextran sodium sulfate (DSS)-induced colitis in mice. Methods: Clostridium butyricum was administered to mice 14 days before administering DSS treatment to induce enteritis. Results: Clostridium butyricum B14 could more effectively prevent colitis in mice than C. butyricum B13. C. butyricum B14 protected the mouse colon by decreasing the histology index and serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, which improved intestinal inflammation-related symptoms. In addition, the treatment led to the regulation of the expression of Tifa, Igkv12-89, and Nr1d1, which in turn inhibited immune pathways. The expression of Muc4, Lama3, Cldn4, Cldn3, Ocln, Zo1, Zo2, and Snai is related the intestinal mucosal barrier. 16S sequencing shows that the C. butyricum B14 significantly increased the abundance of certain intestinal probiotics. Overall, C. butyricum B14 exerted a preventive effect on colitis in mice by inhibiting immune responses, enhancing the intestinal barrier and increasing the abundance of probiotic species. Thus, C. butyricum B14 administration helps regulate the balance of the intestinal microecology. It can suppress immune pathways and enhance barrier-protective proteins.

5.
Genes (Basel) ; 15(4)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38674333

ABSTRACT

There is an urgent need to find a way to improve the genetic diversity of captive South China tiger (SCT, Panthera tigris amoyensis), the most critically endangered taxon of living tigers, facing inbreeding depression. The genomes showed that 13 hybrid SCTs from Meihuashan were divided into two groups; one group included three individuals who had a closer relationship with pureblood SCTs than another group. The three individuals shared more that 40% of their genome with pureblood SCTs and might be potential individuals for genetic rescuing in SCTs. A large-scale genetic survey based on 319 pureblood SCTs showed that the mean microsatellite inbreeding coefficient of pureblood SCTs decreased significantly from 0.1789 to 0.0600 (p = 0.000009) and the ratio of heterozygous loci increased significantly from 38.5% to 43.2% (p = 0.02) after one individual of the Chongqing line joined the Suzhou line and began to breed in the mid-1980s, which is a reason why the current SCTs keep a moderate level of microsatellite heterozygosity and nucleotide diversity. However, it is important to establish a back-up population based on the three individuals through introducing one pureblood SCT into the back-up population every year. The back-up population should be an important reserve in case the pureblood SCTs are in danger in the future.


Subject(s)
Endangered Species , Microsatellite Repeats , Tigers , Tigers/genetics , Animals , Microsatellite Repeats/genetics , China , Genetic Variation , Inbreeding , Female , Male , Conservation of Natural Resources/methods , Breeding
6.
Ecotoxicol Environ Saf ; 275: 116230, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38552389

ABSTRACT

Epidemiological evidence on the health effects of pesticide exposure among greenhouse workers is limited, and the mechanisms are lacking. Building upon our team's previous population study, we selected two pesticides, CPF and EB, with high detection rates, based on the theoretical foundation that the liver serves as a detoxifying organ, we constructed a toxicity model using HepG2 cells to investigate the impact of individual or combined pesticide exposure on the hepatic metabolism profile, attempting to identify targeted biomarkers. Our results showed that CPF and EB could significantly affect the survival rate of HepG2 cells and disrupt their metabolic profile. There were 117 metabolites interfered by CPF exposure, which mainly affected ABC transporter, biosynthesis of amino acids, center carbon metabolism in cancer, fatty acid biosynthesis and other pathways, 95 metabolites interfered by EB exposure, which mainly affected center carbon metabolism in cancer, HIF-1 signaling pathway, valine, leucine and isoleucine biosynthesis, fatty acid biosynthesis and other pathways. The cross analysis and further biological experiments confirmed that CPF and EB pesticide exposure may affect the HIF-1 signaling pathway and valine, leucine and isoleucine biosynthesis in HepG2 cells, providing reliable experimental evidence for the prevention and treatment of liver damage in greenhouse workers.


Subject(s)
Chlorpyrifos , Insecticides , Ivermectin/analogs & derivatives , Pesticides , Humans , Chlorpyrifos/toxicity , Chlorpyrifos/metabolism , Pesticides/toxicity , Hep G2 Cells , Leucine , Isoleucine , Carbon , Valine , Fatty Acids , Insecticides/toxicity , Insecticides/metabolism
7.
Genes Genet Syst ; 992024 May 24.
Article in English | MEDLINE | ID: mdl-38556272

ABSTRACT

Primula secundiflora is an insect-pollinated, perennial herb belonging to the section Proliferae (Primulaceae) that exhibits considerable variation in its mating system, with predominantly outcrossing populations comprising long-styled and short-styled floral morphs and selfing populations comprising only homostyles. To facilitate future investigations of the population genetics and mating patterns of this species, we developed 25 microsatellite markers from P. secundiflora using next-generation sequencing and measured polymorphism and genetic diversity in a sample of 30 individuals from three natural populations. The markers displayed high polymorphism, with the number of observed alleles per locus ranging from three to 16 (mean = 8.36). The observed and expected heterozygosities ranged from 0.100 to 1.000 and 0.145 to 0.843, respectively. Twenty-one of the loci were also successfully amplified in P. denticulata. These microsatellite markers should provide powerful tools for investigating patterns of population genetic diversity and the evolutionary relationships between distyly and homostyly in P. secundiflora.


Subject(s)
Microsatellite Repeats , Polymorphism, Genetic , Primula , Primula/genetics , High-Throughput Nucleotide Sequencing/methods , Alleles , Genetics, Population/methods
8.
Food Chem X ; 21: 101139, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38304047

ABSTRACT

The pile-up processing has a great impact on the flavor of white tea. To investigate the effects of the volatile accumulation of white tea with different piling thickness treatments, tea leaves from different thickness treatments were subjected to sensory quantitative description analysis and ATD-GC-MS detection in this study. As a result, 122 volatile components were identified from white tea with different treatments. A total of 8 key compounds, including isovaleraldehyde, isobutyraldehyde, 2-methyl-butanal, 1-octene-3-ol, linalool, pentanoic acid, hexanal and 1-hexanol were screened out using multivariate statistical analysis, which were characteristic components of grassy, floral-fruity, pekoe aroma and sweet flavors. The results of the selected key characteristic volatile compounds were consistent with the sensory quantitative description. The aroma of mid-pile dried tea (MD) was exhibited a harmonious and pleasant overall flavor. This study provides a novel insight into the accumulation of volatile during the withering step of white tea production.

9.
BMC Pulm Med ; 24(1): 65, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38297272

ABSTRACT

BACKGROUND: Exercise is crucial for pulmonary rehabilitation and improving the prognosis of lung transplantation (LTx) patients. However, many LTx patients in China have low exercise tolerance and compliance, and the reasons behind these challenges have not been fully elucidated. Therefore, this qualitative research aims to identify the barriers to and facilitators of exercise rehabilitation in LTx patients. METHODS: From January to July 2023, 15 stable LTx patients were recruited and participated in in-depth, semi-structured, face-to-face interviews at Henan Provincial People's Hospital. The interview transcripts were analyzed using the COM-B model and the Theoretical Domains Framework (TDF). RESULTS: Six general themes including 19 barriers and 14 facilitators for the exercise rehabilitation of LTx patients were identified based on the COM-B model and TDF. The barriers to exercise included physical limitations, insufficient exercise endurance, lack of knowledge, and lack of motivation. The facilitators of exercise included motivation, self-efficacy, perceived significance of exercise rehabilitation, and social support. CONCLUSION: The study offers detailed insight into the development and implementation of exercise rehabilitation intervention strategies for LTx patients. By combining COM-B model and TDF, the study provides strong evidence that active behavior change strategies are required for LTx patients to promote their participation in exercise rehabilitation. Professional support, pulmonary rehabilitation training, behavior change technology, and digital health tools are essential for strengthening the evidence system for reporting exercise efficacy and effectiveness.


Subject(s)
Exercise , Lung Transplantation , Adult , Humans , Qualitative Research , Exercise Therapy , Social Support , Motivation
10.
Metab Brain Dis ; 39(1): 115-127, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979090

ABSTRACT

Andrographolide (Andro), a labdane diterpene, possesses anti-inflammatory properties and has been used to treat numerous inflammatory diseases. Novel findings revealed that Andro might be vital in regulating pain. However, the contribution of Andro to chronic inflammatory pain has yet to be determined, and its underlying mechanism of action remains unknown. In this study, we observed that Andro attenuated mechanical allodynia in inflammatory pain mice induced by injecting complete Freund's adjuvant (CFA) into the right hind paws. This analgesic effect of Andro is mainly dependent on its inhibition of microglial overactivation and the release of proinflammatory cytokines (TNF and IL-1ß) in lumbar spinal cords of inflammatory pain model mice. More importantly, our data in vivo and in vitro revealed a negative role for Andro in regulating the TLR4/NF-κB signaling pathway, which might contribute to the inhibition of spinal microglial activation and proinflammatory cytokines production, and the improvement of paw withdrawal thresholds in a mouse model of chronic inflammatory pain evoked by CFA. We further found the potential interaction of Andro with TLR4/myeloid differentiation factor 2 heterodimer using molecular modeling, implying that TLR4 might be a potential target for Andro to exert an analgesic effect. Taken together, our findings demonstrated that the modulation of spinal microglial activation by Andro might be substantially conducive to managing chronic pain triggered by neuroinflammation.


Subject(s)
Diterpenes , Hyperalgesia , Mice , Animals , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Microglia/metabolism , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Pain/drug therapy , Pain/metabolism , Diterpenes/pharmacology , Diterpenes/therapeutic use , Diterpenes/metabolism , Cytokines/metabolism , Spinal Cord , Analgesics/pharmacology , Analgesics/therapeutic use
11.
Plant Reprod ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966580

ABSTRACT

Papaya is a tropical fruit crop renowned for its rich nutrition, particularly pro-vitamin A. Aroma substances are a major component of fruit quality. While extensive research has been conducted on papaya aroma, there has been a notable lack of in-depth research into a specific class of substances. To bridge this gap, our study focused on analyzing the aroma components of various papaya varieties and their biosynthesis pathways. We compared the volatile components of three papaya varieties with distinct flavors at various ripeness stages. A continuous accumulation of linalool, a volatile compound, in the 'AU9' fruit was detected as it matured. The linalool content reached 56% of the total volatile components upon full ripening. Notably, this percentage was significantly higher than that observed in the other two varieties, 'ZhongBai' and 'Malaysian 7', indicating that linalool serves as the primary component influencing the papaya's odor. Subsequently, we identified CpTPS18, a gene associated with linalool biosynthesis, and demonstrated its ability to catalyze linalool production from GPP and enhance its accumulation through overexpression in papaya fruits, both in vivo and in vitro. Based on transcriptomic analysis, it was predicted that CpMYB56 and CpNAC56 may transcriptionally activate the expression of CpTPS18. Subsequent yeast one-hybrid assay and dual luciferase analysis revealed that CpNAC56 activates the transcription of CpTPS18. Transient overexpression in vivo demonstrated that this gene could upregulate the expression of CpTPS18 and promote linalool accumulation. These results uncovered the primary volatile molecule responsible for papaya fruit odor and identified two major genes influencing its biosynthesis. The genomic resources and information obtained from this study will expedite papaya improvement for fruit quality.

12.
Front Pharmacol ; 14: 1214349, 2023.
Article in English | MEDLINE | ID: mdl-37693901

ABSTRACT

Objective: The present systematic review and meta-analysis aimed to estimate the prophylactic effect of alpha blockers against postoperative urinary retention (POUR) in orthopaedic patients. Methods: PubMed, Embase, Web of Science and Cochrane Library databases were searched between 1 January 1990 and 1 March 2023. The studies reporting the preventive efficacy of alpha blockers on POUR after orthopaedic procedures were identified. The pooled rates of POUR in the Intervention group (patients receiving alpha blockers) and the Control group (patients not receiving alpha blockers) were estimated and compared. The risk ratios (RRs) were calculated using the random-effects model. Subgroup analysis was performed based on surgical type. Trial sequential analysis (TSA) was conducted to confirm the robustness of pooled results. Results: Seven studies containing 1,607 patients were identified. The rates of POUR were similar between the two groups (Intervention group: 126/748 [16.8%] VS. Control group: 168/859 [19.6%]; RR = 0.75; 95% confidence interval [CI] 0.51 to 1.09; p = 0.130; Heterogeneity: I2 = 67.1%; p = 0.006). No significant difference in the incidence of POUR was observed in either the Arthroplasty subgroup or Spine surgery subgroup. The result of TSA suggested that the total sample size of the existing evidence might be insufficient to draw conclusive results. Administrating alpha blockers was associated with a higher risk of complications (88/651 [13.5%] VS. 56/766 [7.3%]; RR = 1.73; 95% CI 1.27 to 2.37; p = 0.0005; Heterogeneity: I2 = 0%; p = 0.69). Conclusion: Prophylactic alpha blockers do not reduce the risk of POUR in orthopaedic procedures, and administrating these drugs was associated with a higher risk of complications. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=409388.

13.
ACS Appl Mater Interfaces ; 15(34): 40772-40780, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37594493

ABSTRACT

Temperature sensors have attracted great attention for personal health care and disease diagnosis in recent years. However, it is still a great challenge to fabricate reliable and highly sensitive temperature sensors that can convert physiological signals into easily readable signals in a convenient way. Herein, an integrated smart temperature sensor system based on a traditional temperature sensor and electrochromic display is proposed for real-time visual detection of temperature. Significantly, a voltage-regulated electrochromic device (ECD) based on tungsten oxide (WO3) and polyaniline (PANI) as the real-time visualization window was integrated into the platform to provide feedback on the temperature change. The ECD would change its color from green to blue based on the electrical signal of the temperature sensor, resulting in a visualized readout that can be monitored through our naked eye. Additionally, the smart temperature sensor system possesses an extremely durable property and cycle stability, remaining around 90% of the initial value even after 15,000 s continuous cycle. Thus, the novel design and low power consumption advantages make it a good candidate to pave the way for developing interactive wearable electronics and intelligent robots as real-time temperature feedback systems.

14.
J Immunol ; 211(7): 1073-1081, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37566492

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fibrotic age-related chronic lung disease characterized by the accumulation of senescent cells. Whether impaired immune response is responsible for the accumulation of senescent cells in the IPF lung remains unknown. In this study, we characterized the NK phenotype in IPF lungs via flow cytometry using 5-dodecanoylaminofluorescein di-ß-d-galactopyranoside, markers of tissue residence, and chemokine receptors. The effect of the lung microenvironment was evaluated using lung fibroblast (LF) conditioned media (CM), and the bleomycin-induced pulmonary fibrosis mouse model was used to assess the in vivo relationship between NK cells and the accumulation of senescent cells. We found that NK cells from the lower lobe of IPF patients exhibited immune-senescent and impaired CD57-NKG2A+ phenotype. We also observed that culture of NK cells from healthy donors in CM from IPF lower lobe lung fibroblasts induced a senescent-like phenotype and impaired cytotoxic capacity. There is an impaired NK recruitment by LF, and NKs presented decreased migration toward their CM. In addition, NK cell-depleted mice treated with bleomycin showed increased collagen deposition and accumulation of different populations of senescent cells compared with controls. The IPF lung microenvironment induces a dysfunctional NK phenotype limiting the clearance of lung senescent cells and the resolution of lung fibrosis. We propose that impaired NK activity could be one of the mechanisms responsible for perpetuating the accumulation of senescent cells in IPF lungs.


Subject(s)
Antineoplastic Agents , Idiopathic Pulmonary Fibrosis , Mice , Animals , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Bleomycin/adverse effects , Fibrosis , Antineoplastic Agents/pharmacology , Fibroblasts
15.
Org Biomol Chem ; 21(30): 6124-6128, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477205

ABSTRACT

A new method to access flavones in a convergent fashion has been developed, based on the Stork-Danheiser reaction. By this method, 4-methoxy coumarins are allowed to react with organolithium at low temperatures (-78 °C to -40 °C) and then acidic workup gives the desired flavones in 18-86% yields. This method features transition metal-free conditions, readily available starting materials, and simple operation. It is particularly efficient when rapid generation of B ring flavone derivatives is desired.

16.
J Agric Food Chem ; 71(31): 11806-11833, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37467345

ABSTRACT

In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.


Subject(s)
Anti-Infective Agents , Food Packaging , Food Packaging/methods , Food Preservation/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biopolymers
17.
Cell Mol Neurobiol ; 43(7): 3343-3373, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37470889

ABSTRACT

HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.


Subject(s)
HIV Infections , Neuralgia , Humans , Animals , Hyperalgesia/metabolism , HIV Infections/complications , HIV Infections/drug therapy , HIV , Therapeutic Human Experimentation , Quality of Life , Neuralgia/drug therapy , Neuralgia/metabolism , Disease Models, Animal
18.
Environ Res ; 236(Pt 1): 116619, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37482127

ABSTRACT

Beta-cypermethrin is one of the widely used pyrethroid insecticides, and problems associated with the accumulation of its residues have aroused public attention. Thus, there is an urgent need to effectively remove the beta-cypermethrin that is present in the environment. Biodegradation is considered a cost-effective and environmentally friendly method for removing pesticide residues. However, the beta-cypermethrin-degrading microbes that are currently available are not optimal. In this study, Pseudomonas aeruginosa PAO1 was capable of efficiently degrading beta-cypermethrin and its major metabolite 3-phenoxybenzaldehyde in water/soil environments. Strain PAO1 could remove 91.4% of beta-cypermethrin (50 mg/L) in mineral salt medium within 120 h. At the same time, it also possesses a significant ability to metabolize 3-phenoxybenzaldehyde-a toxic intermediate of beta-cypermethrin. The Andrews equation showed that the maximum substrate utilization concentrations of beta-cypermethrin and 3-phenoxybenzaldehyde by PAO1 were 65.3558 and 49.6808 mg/L, respectively. Box-Behnken design-based response surface methodology revealed optimum conditions for the PAO1 strain-based degradation of beta-cypermethrin as temperature 30.6 °C, pH 7.7, and 0.2 g/L inoculum size. The results of soil remediation experiments showed that indigenous micro-organisms helped to promote the biodegradation of beta-cypermethrin in soil, and beta-cypermethrin half-life in non-sterilized soil was 6.84 days. The bacterium transformed beta-cypermethrin to produce five possible metabolites, including 3-phenoxybenzyl alcohol, methyl 2-(4-hydroxyphenoxy)benzoate, diisobutyl phthalate, 3,5-dimethoxyphenol, and 2,2-dimethyl-1-(4-phenoxyphenyl)propanone. Among them, methyl 2-(4-hydroxyphenoxy)benzoate and 3,5-dimethoxyphenol were first identified as the intermediate products during the beta-cypermethrin degradation. In addition, we propose a degradation pathway for beta-cypermethrin that is metabolized by strain PAO1. Beta-cypermethrin could be biotransformed firstly by hydrolysis of its carboxylester linkage, followed by cleavage of the diaryl bond and subsequent metabolism. Based on the above results, P. aeruginosa PAO1 could be a potent candidate for the beta-cypermethrin-contaminated environmental bioremediation.


Subject(s)
Pyrethrins , Soil Pollutants , Pseudomonas aeruginosa , Biodegradation, Environmental , Pyrethrins/metabolism , Benzoates , Soil , Soil Pollutants/metabolism
19.
Front Microbiol ; 14: 1168378, 2023.
Article in English | MEDLINE | ID: mdl-37275148

ABSTRACT

Numerous different species of LAB are used in different fields due to their unique characteristics. However, Lacticaseibacillus chiayiensis, a newly established species in 2018, has limited microorganism resources, and lacks comprehensive evaluations of its properties. In this study, L. chiayiensis AACE3, isolated from fermented blueberry, was evaluated by genomic analysis and in vitro assays of the properties. The genome identified genes associated with biofilm formation (luxS, ccpA, brpA), resistance to oxidative stress (tpx, trxA, trxB, hslO), tolerance to acidic conditions (dltA, dltC), resistance to unfavorable osmotic pressure (opuBB, gbuA, gbuB, gbuC), and adhesion (luxS, dltA, dltC). The AACE3 showed 112 unique genes, relative to the other three L. chiayiensis strains. Among them, the presence of genes such as clpP, pepO, and feoA suggests a possible advantage of AACE3 over other L. chiayiensis in terms of environmental adaptation. In vitro evaluation of the properties revealed that AACE3 had robust antibacterial activity against eight common pathogens: Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, Salmonella choleraesuis, Shigella flexneri, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, AACE3 showed more than 80% survival rate in all tests simulating gastrointestinal fluid, and it exhibited high antioxidant capacity. Interestingly, the cell culture supernatant was superior to intact organisms and ultrasonically crushed bacterial extracts in all tests of antioxidant capacity. These results suggested that the antioxidant capacity may originate from certain metabolites and extracellular enzymes produced by AACE3. Moreover, AACE3 was a moderate biofilm producer due to the self-agglomeration effect. Taken together, L. chiayiensis AACE3 appears to be a candidate strain for combating the growing incidence of pathogen infections and antioxidant production.

20.
Front Plant Sci ; 14: 1162014, 2023.
Article in English | MEDLINE | ID: mdl-37152141

ABSTRACT

The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...