Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(24): e2307818, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613835

ABSTRACT

Hypercholesterolaemia is a systemic metabolic disease, but the role of organs other than liver in cholesterol metabolism is unappreciated. The phenotypic characterization of the Tsc1Dmp1 mice reveal that genetic depletion of tuberous sclerosis complex 1 (TSC1) in osteocytes/osteoblasts (Dmp1-Cre) triggers progressive increase in serum cholesterol level. The resulting cholesterol metabolic dysregulation is shown to be associated with upregulation and elevation of serum amyloid A3 (SAA3), a lipid metabolism related factor, in the bone and serum respectively. SAA3, elicited from the bone, bound to toll-like receptor 4 (TLR4) on hepatocytes to phosphorylate c-Jun, and caused impeded conversion of cholesterol to bile acids via suppression on cholesterol 7 α-hydroxylase (Cyp7a1) expression. Ablation of Saa3 in Tsc1Dmp1 mice prevented the CYP7A1 reduction in liver and cholesterol elevation in serum. These results expand the understanding of bone function and hepatic regulation of cholesterol metabolism and uncover a potential therapeutic use of pharmacological modulation of SAA3 in hypercholesterolaemia.


Subject(s)
Cholesterol , Liver , Osteoblasts , Osteocytes , Serum Amyloid A Protein , Animals , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Mice , Cholesterol/metabolism , Liver/metabolism , Osteocytes/metabolism , Osteoblasts/metabolism , Hypercholesterolemia/metabolism , Disease Models, Animal , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Male
2.
Oncogene ; 42(50): 3657-3669, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37872214

ABSTRACT

Conventional therapies for acute myeloid leukemia (AML) often fail to eliminate the disease-initiating leukemia stem cell (LSC) population, leading to disease relapse. Interferon-γ (IFN-γ) is a known inflammatory cytokine that promotes antitumor responses. Here, we found that low serum IFN-γ levels correlated with a higher percentage of LSCs and greater relapse incidence in AML patients. Furthermore, IFNGR1 was overexpressed in relapsed patients with AML and associated with a poor prognosis. We showed that high doses (5-10 µg/day) of IFN-γ exerted an anti-AML effect, while low doses (0.01-0.05 µg/day) of IFN-γ accelerated AML development and supported LSC self-renewal in patient-derived AML-LSCs and in an LSC-enriched MLL-AF9-driven mouse model. Importantly, targeting the IFN-γ receptor IFNGR1 by using lentiviral shRNAs or neutralizing antibodies induced AML differentiation and delayed leukemogenesis in vitro and in mice. Overall, we uncovered essential roles for IFN-γ and IFNGR1 in AML stemness and showed that targeting IFNGR1 is a strategy to decrease stemness and increase differentiation in relapsed AML patients.


Subject(s)
Interferon-gamma , Leukemia, Myeloid, Acute , Humans , Mice , Animals , Interferon-gamma/pharmacology , Leukemia, Myeloid, Acute/pathology , Carcinogenesis/pathology , Neoplastic Stem Cells/pathology , Recurrence
4.
Blood ; 141(26): 3184-3198, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37001042

ABSTRACT

The bone marrow microenvironment supports leukocyte mobilization and differentiation and controls the development of leukemias, including acute myeloid leukemia (AML). Here, we found that the development of AML xenotransplants was suppressed in mice with osteoclasts tuberous sclerosis 1 (Tsc1) deletion. Tsc1-deficient osteoclasts released a high level of interleukin-34 (IL-34), which efficiently induced AML cell differentiation and prevented AML progression in various preclinical models. Conversely, AML development was accelerated in mice deficient in IL-34. Interestingly, IL-34 inhibited AML independent of its known receptors but bound directly to triggering receptor expressed on myeloid cells 2 (TREM2), a key hub of immune signals. TREM2-deficient AML cells and normal myeloid cells were resistant to IL-34 treatment. Mechanistically, IL-34-TREM2 binding rapidly phosphorylated Ras protein activator like 3 and inactivated extracellular signal-regulated protein kinase 1/2 signaling to prevent AML cell proliferation and stimulate differentiation. Furthermore, TREM2 was downregulated in patients with AML and associated with a poor prognosis. This study identified TREM2 as a novel receptor for IL-34, indicating a promising strategy for overcoming AML differentiation blockade in patients with AML.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Mice , Bone Marrow/metabolism , Carrier Proteins/metabolism , Interleukins/genetics , Interleukins/metabolism , Leukemia, Myeloid, Acute/metabolism , Signal Transduction , Tumor Microenvironment
5.
Br J Haematol ; 201(5): 940-953, 2023 06.
Article in English | MEDLINE | ID: mdl-36916190

ABSTRACT

Self-renewal and differentiation arrest are two features of leukaemia stem cells (LSCs) responsible for the high relapse rate of acute myeloid leukaemia (AML). To screen drugs to overcome differentiation blockade for AML, we conducted screening of 2040 small molecules from a library of United States Food and Drug Administration-approved drugs and found that the cyclin-dependent kinase (CDK)4/6 inhibitor, abemaciclib, exerts high anti-leukaemic activity. Abemaciclib significantly suppressed proliferation and promoted the differentiation of LSCs in vitro. Abemaciclib also efficiently induced differentiation and impaired self-renewal of LSCs, thus reducing the leukaemic cell burden and improving survival in various preclinical animal models, including patient-derived xenografts. Importantly, abemaciclib strongly enhanced anti-tumour effects in combination with venetoclax, a B-cell lymphoma 2 (Bcl-2) inhibitor. This treatment combination led to a marked decrease in LSC-enriched populations and resulted in a synergistic anti-leukaemic effect. Target screening revealed that in addition to CDK4/6, abemaciclib bound to and inhibited CDK9, consequently attenuating the protein levels of global p-Ser2 RNA Polymerase II (Pol II) carboxy terminal domain (CTD), Myc, Bcl-2, and myeloid cell leukaemia-1 (Mcl-1), which was important for the anti-AML effect of abemaciclib. Collectively, these data provide a strong rationale for the clinical evaluation of abemaciclib to induce LSC differentiation and treat highly aggressive AML as well as other advanced haematological malignancies.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Animals , Humans , Neoplasm Recurrence, Local/pathology , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/pharmacology , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Differentiation
6.
Biomed Pharmacother ; 154: 113566, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35994820

ABSTRACT

To identify therapeutic targets in acute myeloid leukemia (AML), we conducted growth inhibition screens of 2040 small molecules from a library of FDA-approved drugs using a panel of 12 AML cell lines. Tegaserod maleate, a 5-hydroxytryptamine 4 receptor partial agonist, elicits strong anti-AML effects in vitro and in vivo by targeting transient receptor potential melastatin subtype 8 (TRPM8), which plays critical roles in several important processes. However, the role of TRPM8 remains incompletely described in AML, whose treatment is based mostly on antimitotic chemotherapy. Here, we report an unexpected role of TRPM8 in leukemogenesis. Strikingly, TRPM8 knockout inhibits AML cell survival/proliferation by promoting apoptosis. Mechanistically, TRPM8 exerts its oncogenic effect by regulating the ERK-CREB/c-Fos signaling axis. Hyperactivation of ERK signaling can be reversed by TRPM8 inhibition. Importantly, TRPM8 is overexpressed in AML patients, indicating that it is a new prognostic factor in AML. Collectively, our work demonstrates the anti-AML effects of tegaserod maleate via targeting TRPM8 and indicates that TRPM8 is a regulator of leukemogenesis with therapeutic potential in AML.


Subject(s)
Leukemia, Myeloid, Acute , TRPM Cation Channels , Apoptosis , Carcinogenesis , Cell Proliferation , Cell Survival , Humans , Indoles , Leukemia, Myeloid, Acute/metabolism , Membrane Proteins/metabolism
7.
DNA Cell Biol ; 41(7): 683-690, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35687365

ABSTRACT

Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Osteocytes , Ras Homolog Enriched in Brain Protein , Animals , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Bone Resorption/genetics , Bone Resorption/metabolism , Cell Differentiation , Gene Deletion , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Osteoblasts/metabolism , Osteoblasts/pathology , Osteocytes/metabolism , Osteocytes/pathology , Osteogenesis/genetics , Ras Homolog Enriched in Brain Protein/genetics , Ras Homolog Enriched in Brain Protein/metabolism , X-Ray Microtomography
8.
Blood ; 137(25): 3533-3547, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33684929

ABSTRACT

Osteocytes are the most abundant (90% to 95%) cells in bone and have emerged as an important regulator of hematopoiesis, but their role in neutrophil development and the underlying mechanisms remain unclear. Interleukin 19 (IL-19) produced predominantly by osteocytes stimulated granulopoiesis and neutrophil formation, which stimulated IL-19 receptor (IL-20Rß)/Stat3 signaling in neutrophil progenitors to promote their expansion and neutrophil formation. Mice with constitutive activation of mechanistic target of rapamycin complex (mTORC1) signaling in osteocytes (Dmp1-Cre) exhibited a dramatic increase in IL-19 production and promyelocyte/myelocytic expansion, whereas mTORC1 inactivation in osteocytes reduced IL-19 production and neutrophil numbers in mice. We showed that IL-19 administration stimulated neutrophil development, whereas neutralizing endogenous IL-19 or depletion of its receptor inhibited the process. Importantly, low-dose IL-19 reversed chemotherapy, irradiation, or chloramphenicol-induced neutropenia in mice more efficiently than granulocyte colony-stimulating factor. This evidence indicated that IL-19 was an essential regulator of neutrophil development and a potent cytokine for neutropenia treatment.


Subject(s)
Interleukins/metabolism , Myelopoiesis , Neutropenia/metabolism , Neutrophils/metabolism , Osteocytes/metabolism , Animals , Female , Humans , Interleukins/genetics , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Neutropenia/genetics , Neutropenia/therapy , Neutrophils/pathology , Osteocytes/pathology
9.
Exp Cell Res ; 388(1): 111801, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31877304

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by autoimmune-mediated platelet destruction and impaired platelet production, which can lead to an increased risk of bleeding. The clinical management of ITP currently remains a challenge for hematologists. We explored the role of interleukin-9 (IL-9) in the treatment of CD41-induced ITP, and investigated its underlying mechanisms in a CD41-induced ITP mouse model. IL-9 treatment increased the numbers of mature megakaryocytes (CD41+CD42d+) and CD41+Sca-1+ cells in the bone marrow in these model mice, while IL-9 receptor (IL-9R) small interfering RNA (siRNA) inhibited the process. Moreover, phosphorylated signal transducer and activator of transcription 5 (STAT5), as a downstream molecule of IL-9R, was increased after IL-9 treatment. We next investigated the source of IL-9 in bone marrow, osteoblasts produced the highest level of IL-9. These results confirmed that IL-9 could prevent CD41-induced ITP in BALB/c mice by regulating osteoblasts and activating IL-9R/STAT5 signaling in megakaryocytes, thus providing further evidence for IL-9 as a promising therapeutic agent for the treatment of ITP.


Subject(s)
Interleukin-9/therapeutic use , Janus Kinases/metabolism , Purpura, Thrombocytopenic, Idiopathic/drug therapy , STAT5 Transcription Factor/metabolism , Signal Transduction , Animals , Cells, Cultured , Interleukin-9/pharmacology , Male , Megakaryocytes/drug effects , Megakaryocytes/metabolism , Mice , Mice, Inbred BALB C , Osteoblasts/drug effects , Osteoblasts/metabolism , Purpura, Thrombocytopenic, Idiopathic/prevention & control , Receptors, Interleukin-9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...