Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
J Med Microbiol ; 73(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38629677

ABSTRACT

With the development of social economy, the incidence of gout is increasing, which is closely related to people's increasingly rich diet. Eating a diet high in purine, fat, sugar and low-fibre for a long time further aggravates gout by affecting uric acid metabolism. The renal metabolism mechanism of uric acid has been thoroughly studied. To find a new treatment method for gout, increasing studies have recently been conducted on the mechanism of intestinal excretion, metabolism and absorption of uric acid. The most important research is the relationship between intestinal microbiota and the risk of gout. Gut microbiota represent bacteria that reside in a host's gastrointestinal tract. The composition of the gut microbiota is associated with protection against pathogen colonization and disease occurrence. This review focuses on how gut microbiota affects gout through uric acid and discusses the types of bacteria that may be involved in the occurrence and progression of gout. We also describe potential therapy for gout by restoring gut microbiota homeostasis and reducing uric acid levels. We hold the perspective that changing intestinal microbiota may become a vital method for effectively preventing or treating gout.


Subject(s)
Gastrointestinal Microbiome , Gout , Humans , Uric Acid/metabolism , Gout/metabolism , Gastrointestinal Tract/metabolism , Bacteria/metabolism
2.
J Inflamm Res ; 16: 6167-6178, 2023.
Article in English | MEDLINE | ID: mdl-38111686

ABSTRACT

Venous thromboembolism is a condition that includes deep vein thrombosis and pulmonary embolism. It is the third most common cardiovascular disease behind acute coronary heart disease and stroke. Over the past few years, growing research suggests that venous thrombosis is also related to the immune system and inflammatory factors have been confirmed to be involved in venous thrombosis. The role of inflammation and inflammation-related biomarkers in cerebrovascular thrombotic disease is the subject of ongoing debate. P-selectin leads to platelet-monocyte aggregation and stimulates vascular inflammation and thrombosis. The dysregulation of miRNAs has also been reported in venous thrombosis, suggesting the involvement of miRNAs in the progression of venous thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is a crucial component of the plasminogen-plasmin system, and elevated levels of PAI-1 in conjunction with advanced age are significant risk factors for thrombosis. In addition, it has been showed that one of the ways that neutrophils promote venous thrombosis is the formation of neutrophil extracellular traps (NETs). In recent years, the role of extracellular vesicles (EVs) in the occurrence and development of VTE has been continuously revealed. With the advancement of research technology, the complex regulatory role of EVs on the coagulation process has been gradually discovered. However, our understanding of the causes and consequences of these changes in venous thrombosis is still limited. Therefore, we review our current understanding the molecular mechanisms of venous thrombosis and the related clinical trials, which is crucial for the future treatment of venous thrombosis.

3.
Cell Death Discov ; 9(1): 19, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681676

ABSTRACT

INTRODUCTION: Early diagnosis and potential therapeutic targets of sepsis-induced cardiomyopathy (SIC) remain challenges clinically. Circulating extracellular vesicles from immune cells carrying crucial injurious mediators, including miRNAs in sepsis. However, the impacts of neutrophil-derived extracellular vesicles and their miRNAs in the SIC development are unknown. OBJECTIVES: The present study focused on the in-depth miRNA expression profiles of neutrophil-derived extracellular vesicles and explored the potential molecular biomarkers during the process of SIC. METHODS: Neutrophil-derived extracellular vesicles were isolated from the blood samples in three sepsis patients with or without cardiomyopathy on day 1 and day 3 after ICU admission in comparison with three healthy controls. miRNAs were determined by RNA sequencing. The closely related differentially expressed miRNAs with SIC were further validated through qRT-PCR in the other cohorts of sepsis patients with (30 patients) or without cardiomyopathy (20 patients) and the association between miRNAs and the occurrence or disease severity of septic cardiomyopathy were stratified with logistic regression analysis. RESULTS: Sixty-eight miRNAs from neutrophil-derived extracellular vesicles were changed significantly between healthy controls and without septic cardiomyopathy patients (61 miRNAs upregulated and seven downregulated). Thirty-eight miRNAs were differentially expressed in the septic cardiomyopathy patients. 27 common differentially expressed miRNAs were found in both groups with similar kinetics (23 miRNAs upregulated and four downregulated). The enriched cellular signaling pathway mediated by miRNAs from sepsis to septic cardiomyopathy was the HIF-1 signaling system modulated septic inflammation. Using multivariate logistic regression analysis, miR-150-5p coupled with NT-pro BNP, LVEF, and SOFA score (AUC = 0.941) were found to be the independent predictors of septic cardiomyopathy. CONCLUSION: miRNAs derived from neutrophil-derived extracellular vesicles play an important role in septic disease severity development towards cardiomyopathy. miR-150-5p may be a predictor of sepsis severity development but warrants further study.

4.
Environ Sci Pollut Res Int ; 30(5): 11978-11993, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36103069

ABSTRACT

Dendrobium is a valuable traditional Chinese herb that contains active ingredients such as polysaccharides and alkaloids that have anti-aging, antioxidant, and immunomodulating effects. The appropriate distribution range of Dendrobium should be predicted from the perspective of ecological niche theory in order to preserve and utilize medicinal plant resources. In this study, Dendrobium nobile, Dendrobium officinale, and Dendrobium moniliforme were selected to predict the potential suitable distributions and ecological niche shifts. A comparison of 19 environmental variables of the three Dendrobium species revealed three climatic factors that differed significantly when the species were compared two at a time. The principal component analysis was carried out in order to screen seven climatic factors for ecological niche shift analysis. All three Dendrobium species were found to have a very similar ecological niche, but with a relatively small range of variability regarding certain climatic factors. Finally, the current and future suitable areas for these three Dendrobium species in China were predicted using the MaxEnt model and ArcGIS using the two representative concentration pathways (RCP 2.6 and 8.5). Overall, the analysis of the climatic factors' comparisons, niche shift, and current and future suitable areas of these three Dendrobium species provides a basis for medicinal plant resource conservation and utilization, and our methods could be applied to the study of other similar valuable medicinal plants.


Subject(s)
Alkaloids , Dendrobium , Plants, Medicinal , Climate Change , China
5.
Cell Death Discov ; 8(1): 18, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013123

ABSTRACT

Acute lung injury (ALI) represents a frequent sepsis-induced inflammatory disorder. Mesenchymal stromal cells (MSCs) elicit anti-inflammatory effects in sepsis. This study investigated the mechanism of exosomes from adipose-derived MSCs (ADMSCs) in sepsis-induced ALI. The IL-27r-/- (WSX-1 knockout) or wild-type mouse model of sepsis was established by cecal ligation and puncture (CLP). The model mice and lipopolysaccharide (LPS)-induced macrophages were treated with ADMSC-exosomes. The content of Dil-labeled exosomes in pulmonary macrophages, macrophages CD68+ F4/80+ in whole lung tissues, and IL-27 content in macrophages were detected. The mRNA expression and protein level of IL27 subunits P28 and EBI3 in lung tissue and the levels of IL-6, TNF-α, and IL-1ß were measured. The pulmonary edema, tissue injury, and pulmonary vascular leakage were measured. In vitro, macrophages internalized ADMSC-exosomes, and ADMSC-exosomes inhibited IL-27 secretion in LPS-induced macrophages. In vivo, IL-27 knockout attenuated CLP-induced ALI. ADMSC-exosomes suppressed macrophage aggregation in lung tissues and inhibited IL-27 secretion. ADMSC-exosomes decreased the contents of IL-6, TNF-α, and IL-1ß, reduced pulmonary edema and pulmonary vascular leakage, and improved the survival rate of mice. Injection of recombinant IL-27 reversed the protective effect of ADMSC-exosomes on sepsis mice. Collectively, ADMSC-exosomes inhibited IL-27 secretion in macrophages and alleviated sepsis-induced ALI in mice.

6.
Aging (Albany NY) ; 13(18): 21903-21913, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34551393

ABSTRACT

The mortality rate of young female COVID-19 patients is reported to be lower than that of young males but no significant difference in mortality was found between female and male COVID-19 patients aged over 65 years, and the underlying mechanism is unknown. We retrospectively analyzed clinical characteristics and outcomes of severely ill pre- and post-menopausal COVID-19 patients and compared with age-matched males. Of the 459 patients included, 141 aged ≤55, among whom 19 died (16 males vs. 3 females, p<0.005). While for patients >55 years (n=318), 115 died (47 females vs. 68 males, p=0.149). In patients ≤55 years old, the levels of NLR, median LDH, median c-reactive protein and procalcitonin were significantly higher while the median lymphocyte count and LCR were lower in male than in female (all p<0.0001). In patients over 55, these biochemical parameters were far away from related normal/reference values in the vast majority of these patients in both genders which were in contrast to that seen in the young group. It is concluded that the mortality of severely ill pre-menopausal but not post-menopausal COVID-19 female patients is lower than age-matched male. Our findings support the notion that estrogen plays a beneficial role in combating COVID-19.


Subject(s)
COVID-19/mortality , Estrogens/metabolism , Menopause , Severity of Illness Index , Adult , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , COVID-19/metabolism , Female , Gender Identity , Humans , Lymphocyte Count , Male , Middle Aged , Neutrophils/metabolism , Postmenopause , Premenopause , Procalcitonin/blood , Retrospective Studies , SARS-CoV-2 , Sex Factors
7.
Front Genet ; 12: 691391, 2021.
Article in English | MEDLINE | ID: mdl-34306031

ABSTRACT

Hepatocellular carcinoma (HCC), one of the most common and lethal tumors worldwide, is usually not diagnosed until the disease is advanced, which results in ineffective intervention and unfavorable prognosis. Small molecule targeted drugs of HCC, such as sorafenib, provided only about 2.8 months of survival benefit, partially due to cancer stem cell resistance. There is an urgent need for the development of new treatment strategies for HCC. Tumor immunotherapies, including immune check point inhibitors, chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BsAb), have shown significant potential. It is known that the expression level of glypican-3 (GPC3) was significantly increased in HCC compared with normal liver tissues. A bispecific antibody (GPC3-S-Fabs) was reported to recruit NK cells to target GPC3 positive cancer cells. Besides, bispecific T-cell Engagers (BiTE), including GPC3/CD3, an aptamer TLS11a/CD3 and EpCAM/CD3, were recently reported to efficiently eliminate HCC cells. It is known that immune checkpoint proteins programmed death-1 (PD-1) binding by programmed cell death-ligand 1 (PD-L1) activates immune checkpoints of T cells. Anti-PD-1 antibody was reported to suppress HCC progression. Furthermore, GPC3-based HCC immunotherapy has been shown to be a curative approach to prolong the survival time of patients with HCC in clinically trials. Besides, the vascular endothelial growth factor (VEGF) inhibitor may inhibit the migration, invasion and angiogenesis of HCC. Here we review the cutting-edge progresses on mechanisms and clinical trials of HCC immunotherapy, which may have significant implication in our understanding of HCC and its immunotherapy.

8.
Biomacromolecules ; 22(4): 1346-1356, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33657790

ABSTRACT

Developing a versatile bioadhesive which is biocompatible, adhesive, hemostatic, and therapeutic is of great significance to promote wound sealing and healing. Herein, an adhesive (GTT-3 hydrogel) is fabricated by catalysis of tannic acid modified gelatin (Gel-TA) with transglutaminase (TG). The hydrogen bonding, imine linking, and acyl-transfer reaction between GTT-3 hydrogel and tissue enable efficient hydrogel integration and adhesion to tissue instantly, so as to seal the wound and stop bleeding. Moreover, the intrinsic wound healing ability of gelatin and the antibacterial properties of TA provide favorable conditions for wound healing after adhesion. In vitro mechanical property testing and cell experimental results determine the elasticity, adhesion, and biocompatibility of the GTT-3 hydrogel. The wound operation in mouse models and pathological sectioning results indicate that GTT-3 adhesive obviously accelerates hemostasis, wound bonding, and healing. With the special property of instant adhesion and excellent hemostatic and therapeutic repair effects, GTT-3 hydrogel may provide a new option for surgical operation.


Subject(s)
Hydrogels , Wound Healing , Animals , Anti-Bacterial Agents/therapeutic use , Catalysis , Gelatin , Hemostasis , Mice
9.
Cell Death Dis ; 11(8): 681, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32826852

ABSTRACT

Certain miRNAs can attenuate hypoxia/re-oxygenation-induced autophagic cell death reported in our previous studies, but how these miRNAs regulate the autophagy-related cellular signaling pathway in preventing cell death is largely unknown. In the current study, the autophagy-related miRNAs of hsa-miR-20b were investigated in an in vitro model of hypoxia/re-oxygenation-induced endothelial autophagic cell death. Of these, miR-20b was found to be the most important miRNA which targeted on the key autophagy kinase ULK1 and inhibited hypoxia/re-oxygenation injury-induced autophagy by decreasing both autophagosomes and LC3I to II transition rate and P62 degradation. These processes were reversed by the transfection of an miR-20b inhibitor. Re-expression of ULK1 restores miR-20b-inhibited autophagy. Propofol, a commonly used anesthetic, promoted miR-20b and METTL3 expression and attenuated endothelial autophagic cell death. The inhibited endogenous expression of miR-20b or silenced METTL3 diminished the protective effect of propofol and accentuated autophagy. Additionally, METTL3 knockdown significantly inhibited miR-20b expression but up-regulated pri-miR-20b expression. Together, our data shows that propofol protects against endothelial autophagic cell death induced by hypoxia/re-oxygenation injury, associated with activation of METTL3/miR-20b/ULK1 cellular signaling.


Subject(s)
Autophagy/drug effects , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/genetics , Oxygen/pharmacology , Propofol/pharmacology , Signal Transduction , Autophagy-Related Protein-1 Homolog/metabolism , Base Sequence , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/ultrastructure , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/metabolism , Models, Biological , Signal Transduction/drug effects , Signal Transduction/genetics
10.
J Biomater Sci Polym Ed ; 31(17): 2199-2219, 2020 12.
Article in English | MEDLINE | ID: mdl-32663418

ABSTRACT

Hydrogel scaffolds are explored as efficient methods to repair damaged organs or tissues. In this study, we developed a hybrid hydrogel system based on collagen (Col) and PEG-derived polymer (PEGF) for biomedical scaffold. The Col-PEGF hybrid hydrogel, in which different materials were combined and sequential interpenetrating networks were built, achieved significantly enhanced mechanical strength and viscoelasticity compared with the corresponding Col hydrogel or PEGF hydrogel. Degradation test indicated that Col enabled the hybrid hydrogel to be broken down via enzymatic degradation while PEGF contributed to the anti-degradation of the hydrogel. This balanced biodegradability of Col-PEGF hydrogel would be advantageous to the application for tissue engineering and regenerative medicine. Moreover, the Col-PEGF hybrid hydrogel with micron-sized pores and variable moisture performed good biocompatibility to NIH-3T3 cells, and supplied a favorable environment for cell growth and proliferation. Therefore, the Col-PEGF hydrogel will provide a promising biomedical scaffold for the therapy of tissue defects.


Subject(s)
Hydrogels , Tissue Scaffolds , Animals , Collagen , Mice , Polymers , Tissue Engineering
11.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31043528

ABSTRACT

Serine incorporator 5 (SERINC5) is a recently identified restriction factor that strongly blocks HIV-1 entry but is counteracted by Nef. Notably, tier 1 HIV-1 Env proteins are sensitive to SERINC5, whereas the majority of tier 2/3 Env proteins are resistant to SERINC5, when viruses are produced from CD4-negative cells and tested by a single-round replication assay. Here, we investigated the Env-dependent SERINC5 antiviral mechanism by comparing tier 1 NL Env with tier 3 AD8 Env proteins. We found that when NL and AD8 viruses were inoculated into CD4+ T cells and human peripheral blood mononuclear cells (PBMCs), the propagation of the two viruses was restricted to a similar level when Nef was not expressed. Using a bimolecular fluorescence complementation (BiFC) assay, we detected Env-Env association and Env-SERINC5 interactions. A much greater level of NL Env-SERINC5 interactions was detected than was AD8 Env-SERINC5 interactions, which was further validated by immunoprecipitation assays. In addition, SERINC5 dissociated the NL Env trimeric complex more effectively than the AD8 Env trimeric complex when CD4 was not expressed. However, when CD4 was expressed, SERINC5 became more capable of interacting with AD8 Env and dissociating its trimeric complex. Moreover, AD8 and several other tier 2/3 viruses produced in the presence of CD4 became sensitive to SERINC5 when measured by the single-round replication assay. Because tier 1 and tier 2/3 Env trimers have open and closed conformations, respectively, and CD4 opens the closed conformation, we conclude that SERINC5 selectively dissociates Env trimers with an open conformation to restrict HIV-1 replication.IMPORTANCE Restriction factors provide the first line of defense against retrovirus infection by posing several blocks to the viral replication cycle. SERINC5 is a novel restriction factor that strongly blocks HIV-1 entry, although it is counteracted by Nef. Currently, it is still unclear how HIV-1 entry is blocked by SERINC5. Notably, this entry block is dependent on viral Env proteins. Laboratory-adapted HIV-1 strains are sensitive, whereas primary isolates are highly resistant to SERINC5. Env proteins mediate virus entry via extensive conformational rearrangements from a closed ground state to a CD4-bound open state. We detected Env-Env associations and Env-SERINC5 interactions in live cells by a novel bimolecular fluorescence assay. We demonstrate that CD4 expression increases the Env sensitivity to SERINC5 and allows SERINC5 to dissociate the Env complex, suggesting that SERINC5 restriction is dependent on Env conformation. Our results provide new insights into the poorly defined Env-dependent SERINC5 antiviral mechanism.


Subject(s)
CD4 Antigens , CD4-Positive T-Lymphocytes , Gene Expression Regulation/immunology , HIV-1 , Membrane Proteins , env Gene Products, Human Immunodeficiency Virus , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HEK293 Cells , HIV-1/genetics , HIV-1/immunology , Humans , Jurkat Cells , Membrane Proteins/genetics , Membrane Proteins/immunology , Protein Structure, Quaternary , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
12.
J Virol ; 92(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29514909

ABSTRACT

The primate lentiviral accessory protein Nef downregulates CD4 and major histocompatibility complex class I (MHC-I) from the cell surface via independent endosomal trafficking pathways to promote viral pathogenesis. In addition, Nef antagonizes a novel restriction factor, SERINC5 (Ser5), to increase viral infectivity. To explore the molecular mechanism of Ser5 antagonism by Nef, we determined how Nef affects Ser5 expression and intracellular trafficking in comparison to CD4 and MHC-I. We confirm that Nef excludes Ser5 from human immunodeficiency virus type 1 (HIV-1) virions by downregulating its cell surface expression via similar functional motifs required for CD4 downregulation. We find that Nef decreases both Ser5 and CD4 expression at steady-state levels, which are rescued by NH4Cl or bafilomycin A1 treatment. Nef binding to Ser5 was detected in living cells using a bimolecular fluorescence complementation assay, where Nef membrane association is required for interaction. In addition, Nef triggers rapid Ser5 internalization via receptor-mediated endocytosis and relocalizes Ser5 to Rab5+ early, Rab7+ late, and Rab11+ recycling endosomes. Manipulation of AP-2, Rab5, Rab7, and Rab11 expression levels affects the Nef-dependent Ser5 and CD4 downregulation. Moreover, although Nef does not promote Ser5 polyubiquitination, Ser5 downregulation relies on the ubiquitination pathway, and both K48- and K63-specific ubiquitin linkages are required for the downregulation. Finally, Nef promotes Ser5 colocalization with LAMP1, which is enhanced by bafilomycin A1 treatment, suggesting that Ser5 is targeted to lysosomes for destruction. We conclude that Nef uses a similar mechanism to downregulate Ser5 and CD4, which sorts Ser5 into a point-of-no-return degradative pathway to counteract its restriction.IMPORTANCE Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express an accessory protein called Nef to promote viral pathogenesis. Nef drives immune escape in vivo through downregulation of CD4 and MHC-I from the host cell surface. Recently, Nef was reported to counteract a novel host restriction factor, Ser5, to increase viral infectivity. Nef downregulates cell surface Ser5, thus preventing its incorporation into virus particles, resulting in disruption of its antiviral activity. Here, we report mechanistic studies of Nef-mediated Ser5 downregulation in comparison to CD4 and MHC-I. We demonstrate that Nef binds directly to Ser5 in living cells and that Nef-Ser5 interaction requires Nef association with the plasma membrane. Subsequently, Nef internalizes Ser5 from the plasma membrane via receptor-mediated endocytosis, and targets ubiquitinated Ser5 to endosomes and lysosomes for destruction. Collectively, these results provide new insights into our ongoing understanding of the Nef-Ser5 arms race in HIV-1 infection.


Subject(s)
CD4 Antigens/biosynthesis , Endocytosis/immunology , HIV-1/pathogenicity , Lysosomes/metabolism , Membrane Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Adaptor Protein Complex 2/biosynthesis , Cell Line, Tumor , Down-Regulation , Enzyme Inhibitors/pharmacology , HEK293 Cells , HLA-A Antigens/biosynthesis , HeLa Cells , Humans , Jurkat Cells , Lysosomal Membrane Proteins/metabolism , Macrolides/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Protein Transport/physiology , Ubiquitination/physiology , rab GTP-Binding Proteins/biosynthesis , rab5 GTP-Binding Proteins/biosynthesis , rab7 GTP-Binding Proteins
13.
Immunogenetics ; 70(4): 271-277, 2018 04.
Article in English | MEDLINE | ID: mdl-29030661

ABSTRACT

The northern pig-tailed macaque (Macaca leonina) has been considered as an independent species from the pig-tailed macaque group. We have previously reported that this species macaque has the potential to be a useful animal model in HIV/AIDS pathogenesis and vaccine studies due to its susceptibility to HIV-1. To develop this animal into a potential HIV/AIDS model, we have studied the classical MHC genes of this animal. In this study, the non-classical MHC genes Malo-DM and Malo-DO alleles were first characterized by sequencing and cloning in 12 unrelated northern pig-tailed macaques. A total of 20 full-length sequences identified include 4 Malo-DMA, 5 Malo-DMB, 7 Malo-DOA, and 4 Malo-DOB alleles. Most of these allele sequences were shared between northern pig-tailed macaque and other macaque species in exon 2. The full-length MHC-DM and MHC-DO sequences provide more comprehensive analysis of immunogenetics of northern pig-tailed macaques and increase the value of the macaques in further biomedical studies.


Subject(s)
Exons/genetics , Histocompatibility Antigens Class II/genetics , Macaca/genetics , Sequence Analysis, DNA/methods , Alleles , Animals , Gene Frequency , Histocompatibility Antigens Class II/classification , Phylogeny
14.
Infect Genet Evol ; 56: 26-35, 2017 12.
Article in English | MEDLINE | ID: mdl-29055777

ABSTRACT

The northern pig-tailed macaque (Macaca leonina) has been identified as an independent species from the pig-tailed macaque group. The species is a promising animal model for HIV/AIDS pathogenesis and vaccine studies due to susceptibility to HIV-1. However, the major histocompatibility complex (MHC) genetics in northern pig-tailed macaques remains poorly understood. We have previously studied the MHC class I genes in northern pig-tailed macaques and identified 39 novel alleles. Here, we describe the MHC class II alleles in all six classical loci (DPA, DPB, DQA, DQB, DRA, and DRB) from northern pig-tailed macaques using a sequence-based typing method for the first time. A total of 60 MHC-II alleles were identified of which 27 were shared by other macaque species. Additionally, northern pig-tailed macaques expressed a single DRA and multiple DRB genes similar to the expression in humans and other macaque species. Polymorphism and positive selection were detected, and phylogenetic analysis suggested the presence of a common ancestor in human and northern pig-tailed macaque MHC class II allelic lineages at the DQA, DQB, and DRB loci. The characterization of full-length MHC class II alleles in this study significantly improves understanding of the immunogenetics of northern pig-tailed macaques and provides the groundwork for future animal model studies.


Subject(s)
Genes, MHC Class II , Macaca/genetics , Alleles , Amino Acid Sequence , Animals , Macaca/classification , Phylogeny , Polymorphism, Genetic , Selection, Genetic , Sequence Analysis, DNA
15.
J Immunol ; 199(6): 2030-2042, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28784847

ABSTRACT

Alternative splicing occurs frequently in many genes, especially those involved in immunity. Unfortunately, the functions of many alternatively spliced molecules from immunologically relevant genes remain unknown. Classical HLA-I molecules are expressed on almost all nucleated cells and play a pivotal role in both innate and adaptive immunity. Although splice variants of HLA-I genes have been reported, the details of their functions have not been reported. In the current study, we determined the characteristics, expression, and function of a novel splice variant of HLA-A11 named HLA-A11svE4 HLA-A11svE4 is located on the cell surface without ß2-microglobulin (ß2m). Additionally, HLA-A11svE4 forms homodimers as well as heterodimers with HLA-A open conformers, instead of combining with ß2m. Moreover, HLA-A11svE4 inhibits the activation of NK cells to protect target cells. Compared with ß2m and HLA-A11, the heterodimer of HLA-A11svE4 and HLA-A11 protected target cells from lysis by NK cells more effectively. Furthermore, HLA-AsvE4 expression was upregulated by HIV-1 in vivo and by HSV, CMV, and hepatitis B virus in vitro. In addition, our findings indicated that HLA-A11svE4 molecules were functional in activating CD8+ T cells through Ag presentation. Taken together, these results suggested that HLA-A11svE4 can homodimerize and form a novel heterodimeric complex with HLA-A11 open conformers. Furthermore, the data are consistent with HLA-A11svE4 playing a role in the immune escape of HIV-1.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA-A11 Antigen/metabolism , Killer Cells, Natural/physiology , Protein Isoforms/metabolism , Alternative Splicing , Antigen Presentation/genetics , Cells, Cultured , Cytotoxicity, Immunologic/genetics , Gene Expression Regulation , HLA-A11 Antigen/genetics , Humans , Immune Evasion , Protein Domains/genetics , Protein Isoforms/genetics , Protein Multimerization , Sequence Deletion/genetics
16.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28275190

ABSTRACT

Among the five serine incorporator (SERINC) family members, SERINC5 (Ser5) was reported to strongly inhibit HIV-1 replication, which is counteracted by Nef. Ser5 produces 5 alternatively spliced isoforms: Ser5-001 has 10 putative transmembrane domains, whereas Ser5-004, -005, -008a, and -008b do not have the last one. Here, we confirmed the strong Ser5 anti-HIV-1 activity and investigated its isoforms' expression and antiviral activities. It was found that Ser5-001 transcripts were detected at least 10-fold more than the other isoforms by real-time quantitative PCR. When Ser5-001 and its two isoforms Ser5-005 and Ser5-008a were expressed from the same mammalian expression vector, only Ser5-001 was stably expressed, whereas the others were poorly expressed due to rapid degradation. In addition, unlike the other isoforms, which are located mainly in the cytoplasm, Ser5-001 is localized primarily to the plasma membrane. To map the critical determinant, Ser5 mutants bearing C-terminal deletions were created. It was found that the 10th transmembrane domain is required for Ser5 stable expression and plasma membrane localization. As expected, only Ser5-001 strongly inhibits HIV-1 infectivity, whereas the other Ser5 isoforms and mutants that do not have the 10th transmembrane domain show very poor activity. It was also observed that the Nef counteractive activity could be easily saturated by Ser5 overexpression. Thus, we conclude that Ser5-001 is the predominant antiviral isoform that restricts HIV-1, and the 10th transmembrane domain plays a critical role in this process by regulating its protein stability and plasma membrane targeting.IMPORTANCE Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express a small protein, Nef, to enhance viral pathogenesis in vivo Nef has an important in vitro function, which is to make virus particles more infectious, but the mechanism has been unclear. Recently, Nef was reported to counteract a novel anti-HIV host protein, SERINC5 (Ser5). Ser5 has five alternatively spliced isoforms, Ser5-001, -004, -005, -008a, and -008b, and only Ser5-001 has an extra C-terminal transmembrane domain. We now show that the Ser5-001 transcripts are produced at least 10-fold more than the others, and only Ser5-001 produces stable proteins that are targeted to the plasma membrane. Importantly, only Ser5-001 shows strong anti-HIV-1 activity. We further demonstrate that the extra transmembrane domain is required for Ser5 stable expression and plasma membrane localization. These results suggest that plasma membrane localization is required for Ser5 antiviral activity, and Ser5-001 is the predominant isoform that contributes to the activity.


Subject(s)
HIV-1/physiology , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Animals , HIV-1/genetics , Humans , Membrane Glycoproteins , Membrane Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Isoforms , RNA Splicing , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism
17.
J Biol Chem ; 292(14): 5860-5870, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28196864

ABSTRACT

The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP1 and the fusion-mediating GP2 subunits and incorporated into virions to initiate infection. GP1 and GP2 form heterodimers that have 15 or two N-glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N-glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP1 NGSs are not critical, the two GP2 NGSs, Asn563 and Asn618, are essential for GP function. Further analysis uncovered that Asn563 and Asn618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn563 and Asn618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality.


Subject(s)
Ebolavirus/metabolism , Gene Expression Regulation, Viral , Protein Processing, Post-Translational , Viral Envelope Proteins/metabolism , Animals , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Ebolavirus/genetics , Glycosylation , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , Vero Cells , Viral Envelope Proteins/genetics
18.
Opt Express ; 24(17): 19627-37, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557241

ABSTRACT

In this work, we established a fluorescence resonance energy transfer (FRET) system between ZnSe:Mn/ZnS quantum dots and Hypocrellin A (HA, a photosensitizer used for photodynamic therapy of cancer) in aqueous solution, excited by four-photon. Here, the QDs are the donors and the HA are the acceptors. The four-photon-excited fluorescence resonance energy transfer spectrum was obtained under 1300nm femtosecond laser pluses. The experimental results indicated that the highest efficiency of FRET can reach up to 61.3%. Furthermore, the viability test in cancer cells was further demonstrated for biological applications of FRET system. When FRET occurs the cell killing rate of the cancer cells will reach to 84.8% with the 1mM concentration of HA. Our work demonstrates that while the four-photon excited FRET system is promising in both optics and biological applications, is also needs further investigation.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Perylene/analogs & derivatives , Quinones/chemistry , Selenium Compounds/analysis , Sulfides/analysis , Zinc Compounds/analysis , Perylene/chemistry , Phenol , Photons , Quantum Dots
19.
Chin Med ; 11: 31, 2016.
Article in English | MEDLINE | ID: mdl-27375770

ABSTRACT

BACKGROUND: Aikeqing (AKQ) has been shown in clinical studies to improve quality of life of HIV/AIDS patients, but anti-HIV activity has not been determined. The SHIV-infected macaque is an important animal model for testing antiviral drugs. This study aimed to determine the anti-HIV activity of AKQ in chronically SHIV89.6-infected Chinese rhesus macaques. METHODS: Nine Chinese rhesus macaques were inoculated intravenously with SHIV89.6 virus. At 11 weeks post-infection, the animals were arbitrarily divided into three groups: high-dose (AKQ 1.65 g/kg; n = 3), low-dose (AKQ 0.55 g/kg; n = 3), and control (water 1 mL/kg; n = 3). Treatment was administered by the intragastric gavage route once-daily for 8 weeks. Blood (5 mL) was collected biweekly. Viral loads were analyzed by real-time quantitative RT-PCR assays, and T cell counts were monitored by FACS analyses throughout the treatment. RESULTS: AKQ induced a persistent decline (P = 0.02) in plasma viral loads during treatment in the high-dose group compared with their baseline levels, and cessation of the therapy caused viral load rebound to the pretreatment levels. No significant difference (P = 0.06) was found in the plasma viral loads during treatment in the low-dose group. The CD4(+) T cell counts and CD4/CD8 ratios remained at stable high levels during the treatment period. CONCLUSION: AKQ reduced plasma viral loads in the SHIV89.6-infected Chinese rhesus macaque model.

20.
Immunogenetics ; 68(4): 261-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26782049

ABSTRACT

The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model.


Subject(s)
HIV Infections/genetics , Histocompatibility Antigens Class I/genetics , Macaca/genetics , Phylogeny , Animals , Cloning, Molecular , Disease Models, Animal , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class I/immunology , Humans , Macaca/immunology , Macaca/virology , Polymorphism, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...