Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.573
Filter
1.
J Hazard Mater ; 474: 134782, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824781

ABSTRACT

For a plastic syringe, a stopper at the end of plunger is usually made of polydimethylsiloxane (PDMS, and co-ingredients). To reduce friction and prevent leakage between the stopper and barrel, short chain polymer of liquid PDMS is also used as lubricant. Consequently, an injection process can release solid PDMS debris from the stopper and barrel, and liquid PDMS droplets from the lubricant, both of which are confirmed herein as solid and liquid micro(nano)plastics. From molecular spectrum perspective to directly visualise those micro(nano)plastics, Raman imaging was employed to analyse hundreds-to-thousands of spectra (hyper spectrum or hyperspectral matrix) and significantly enhance signal-to-noise ratio. From morphology perspective to provide high resolution of image, scanning electron microscopy (SEM) was engaged to cross-check with Raman images and increase assignment / quantification certainty. The weak Raman imaging signal of nanoplastics was extracted using image deconvolution algorithm to remove the background noise and average the signal variation. To increase the result's representativeness and avoid quantification bias, multiple syringes were tested and multiple areas were randomly scanned toward statistical results. It was estimated that thousands of microplastics and millions of nanoplastics of solid/liquid PDMS might be injected when using a plastic syringe of 1 mL. Overall, Raman imaging (along with algorithm and SEM) can be helpful for further research on micro(nano)plastics, and it should be cautious to use plastic syringe due to the increasing concern on the emerging contamination of not only solid but also liquid micro(nano)plastics.

2.
J Arthroplasty ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823520

ABSTRACT

BACKGROUND: Modular reconstruction systems based on porous tantalum (PT) prosthetic components have been increasingly used for the treatment of complex acetabular bone defects in revision total hip arthroplasty (rTHA). We report a novel technique that applies a revision cup as a "super-augment" to form a "double-cup" construct for Paprosky type III defects. METHOD: A retrospective review was conducted on rTHA cases, comparing those treated with double-cup constructs (DC group, n = 48) to those treated with PT shells and augments (PT group, n = 48). All procedures were performed at the same institute between 2017 and 2022. Clinical outcome evaluation utilized the Harris Hip Score (HHS), Oxford Hip Score (OHS), and 36-Item Short Form Survey (SF-36). Preoperative and postoperative radiographic assessments measured hip center of rotation (COR) position and leg length discrepancy (LLD). Additionally, postoperative complications and implant survivorship were monitored during the follow-up period. RESULTS: The clinical outcomes improved substantially in both groups, which showed no significant difference in HHS (P = 0.786), OHS (P = 0.570), and SF-36 (P = 0.691). Compared to the PT group, the reconstruction COR was significantly closer to the anatomic COR (vertical distance: 2.630 versus 7.355 mm, P = 0.0034; horizontal distance: 1.881 versus -6.413 mm, P < 0.0001) in Paprosky IIIB type defects. Additionally, postoperative LLD was less in the DC group (-8.252 versus -1.821 mm, P = 0.0008). Dislocation was the main complication in the DC group, and only one patient received re-revision due to repeated dislocation. The cumulative survival rate of the DC group (100%; 95% CI [confidence interval] 100) was better than the PT group (83.4%; 95% CI 70.5 to 98.6) when re-revisions for aseptic loosening were the endpoint (P = 0.046). CONCLUSIONS: The double-cup construct is a reliable revision technique for the reconstruction of Paprosky type III bone defects. Although dislocation remains challenging, the biomechanically superior restoration achieved by this technique lowers the risk of aseptic loosening.

3.
Mil Med Res ; 11(1): 35, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835066

ABSTRACT

Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/epidemiology , Neuroendocrine Tumors/diagnosis , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/therapy , Stomach Neoplasms/diagnosis , Intestinal Neoplasms/therapy , Intestinal Neoplasms/epidemiology , Intestinal Neoplasms/diagnosis
4.
Inorg Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835144

ABSTRACT

Large and rapid lithium storage is hugely demanded for high-energy/power lithium-ion batteries; however, it is difficult to achieve these two indicators simultaneously. Sn-based materials with a (de)alloying mechanism show low working potential and high theoretical capacity, but the huge volume expansion and particle agglomeration of Sn restrict cyclic stability and rate capability. Herein, a soft-in-rigid concept was proposed and achieved by chemical scissoring where a soft Sn-S bond was chosen as chemical tailor to break the Ti-S bond to obtain a loose stacking structure of 1D chain-like Sn1.2Ti0.8S3. The in situ and ex situ (micro)structural characterizations demonstrate that the Sn-S bonds are reduced into Sn domains and such Sn disperses in the rigid Ti-S framework, thus relieving the volume expansion and particle agglomeration by chemical and physical shielding. Benefiting from the merits of large-capacity Sn with an alloying mechanism and high-rate TiS2 with an intercalation mechanism, the Sn1.2Ti0.8S3 anode offers a high specific capacity of 963.2 mA h g-1 at 0.1 A g-1 after 100 cycles and a reversible capacity of 250 mA h g-1 at 10 A g-1 after 3900 cycles. Such a strategy realized by chemical tailoring at the structural unit level would broaden the prospects for constructing joint high-capacity and high-rate LIB anodes.

5.
PhytoKeys ; 242: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38764934

ABSTRACT

In this study, we describe and illustrate a new species, Primulaweiliei L.S.Yang, Z.K.Wu & G.W.Hu, from the Shennongjia Forestry District, Hubei Province in Central China. It is morphologically assigned to Primulasect.Aleuritia based on its dwarf and hairless habit, long petiole, fruits longer than calyx and covered by farina on the scape. This new species is similar to P.gemmifera and P.munroisubsp.yargongensis in the same section, but it can be distinguished by its smaller calyxes, homostylous flowers, corolla tube throat without annular appendage and only 1-2 flowers in each inflorescence. Based on the assessment conducted according to the IUCN Red List criteria, we propose that P.weiliei be classified as a Critically Endangered (CR) species.

6.
Nanoscale ; 16(21): 10483, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38764388

ABSTRACT

Correction for 'Promoter-regulated in vivo asymmetric self-assembly strategy to synthesize heterogeneous nanoparticles for signal amplification' by Chen Chen et al., Nanoscale, 2022, 14, 16180-16184, https://doi.org/10.1039/D2NR04661J.

7.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797860

ABSTRACT

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Subject(s)
Edible Grain , Endosperm , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/genetics , Endosperm/growth & development , Endosperm/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , CRISPR-Cas Systems
8.
Appl Microbiol Biotechnol ; 108(1): 318, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700733

ABSTRACT

DNA-based stable isotope probing (DNA-SIP) technology has been widely employed to trace microbes assimilating target substrates. However, the fractions with labelled universal genes are sometimes difficult to distinguish when detected by quantitative real-time PCR. In this experiment, three paddy soils (AQ, CZ, and NB) were amended with 0.1% glucose containing 13C at six levels, and DNA was then extracted after a 7-day incubation and subjected to isopycnic gradient centrifugation. The results showed that the amount of labelled DNA was notably related to the 13C-glucose percentage, while the separation spans of 18S rRNA and 16S rRNA genes between labelled and unlabelled treatments became notably clearer when the δ13C values of the total DNA were 90.9, 61.6, and 38.9‰ and 256.2, 104.5 and 126.1‰ in the AQ, CZ, and NB soils, respectively. Moreover, fractionated DNA was also labelled by determining the δ13C values while adding only 5 atom% 13C-glucose to the soil. The results suggest that the optimal labelling fractions were not always those fractions with the maximal gene abundance, and detecting the δ13C values of the total and fractionated DNA was beneficial in estimating the results of DNA-SIP. KEY POINTS: • Appropriate 13C-DNA amount was needed for DNA-SIP. • Detecting the 13C ratio of fractionated DNA directly was an assistant method for identifying the labelled fractions. • Fractions with the maximal 18S or 16S rRNA gene abundance always were not labelled.


Subject(s)
Carbon Isotopes , DNA, Bacterial , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Carbon Isotopes/analysis , DNA, Bacterial/genetics , RNA, Ribosomal, 18S/genetics , Ultracentrifugation , Soil/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Isotope Labeling/methods , Glucose/metabolism
9.
Oncol Lett ; 27(6): 289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736746

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with varying characteristics, in terms of genomic variation, cell morphology and clinical presentation. At present, only ~66% of patients are cured with initial treatment and those with refractory DLBCL exhibit a poor prognosis. Thus, further investigations into novel effective treatment options for DLBCL are required. The present study reports the case of a patient resistant to multiple therapies, including rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) plus enzastaurin (trial no. CTR20171560), GemOx plus lenalidomide and selinexor (trial no. ATG-010-DLBCL-001). The patient harbored a CD274 amplification, as identified via next-generation sequencing (NGS), and exhibited a high programmed death-ligand 1 Tumor Proportion Score of up to 95%. Consequently, the patient was treated with sintilimab monotherapy and the response lasted for 12 months of follow-up without major immune-related adverse events. This case highlights the role of NGS technology in selecting treatment options for refractory DLBCL. Furthermore, the results of the present study suggest that sintilimab may have potential in the treatment of patients with refractory DLBCL.

10.
Front Pharmacol ; 15: 1379338, 2024.
Article in English | MEDLINE | ID: mdl-38738180

ABSTRACT

Background: Chinese patent medicine is commonly used in China as an important treatment mechanism to thwart the progression of chronic kidney disease (CKD) stages 3-5, among which Niaoduqing granules are a representative Chinese patent medicine; however, its long-term efficacy on CKD prognosis remains unclear. Methods: Patients were grouped according to Niaoduqing granule prescription duration (non-Niaoduqing granule (non-NDQ) group vs Niaoduqing granule (NDQ) group). Serum creatinine (SCr) variation was compared using a generalized linear mixed model (GLMM). Multivariate Cox regression models were constructed, adjusting for confounding factors, to explore the risk of composite outcomes (receiving renal replacement therapy (RRT) or having an estimated glomerular filtration rate (eGFR)<5 mL/min/1.73 m2, ≥50% decline in the eGFR from the baseline, and doubling of SCr) in individuals consuming Niaoduqing granules. Results: A total of 1,271 patients were included, with a median follow-up duration of 29.71 (12.10, 56.07) months. The mean SCr Z-scores for the non-NDQ group and NDQ group were -0.175 and 0.153, respectively, at baseline (p = 0.015). The coefficients of the NDQ group from visit 1 to visit 5 were -0.207 (95% CI: -0.346, -0.068, p = 0.004), -0.214 (95% CI: 0.389, -0.039, p = 0.017), -0.324 (95% CI: 0.538, -0.109, p = 0.003), -0.502 (95% CI: 0.761, -0.243, p = 0.000), and -0.252 (95% CI: 0.569, 0.065, p = 0.119), respectively. The survival probability was significantly higher in the NDQ group (p = 0.0039). Taking Niaoduqing granules was a significant protective factor for thwarting disease progression (model 1: HR 0.654 (95% CI 0.489-0.875, p = 0.004); model 2: HR 0.646 (95% CI 0.476, 0.877, p = 0.005); and model 3: HR 0.602 (95% CI 0.442, 0.820, p = 0.001)). Conclusion: The long-term use of Niaoduqing granules improved SCr variation and lowered the risk of CKD progression by 39.8%.

11.
Environ Int ; 187: 108713, 2024 May.
Article in English | MEDLINE | ID: mdl-38703446

ABSTRACT

Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.


Subject(s)
Liver , Nanoparticles , Water Pollutants, Chemical , Zebrafish , Animals , Liver/metabolism , Liver/drug effects , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Environmental Health , Polystyrenes/toxicity , Oxidative Stress/drug effects , Metabolomics
12.
Materials (Basel) ; 17(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38793483

ABSTRACT

As the Brønsted acid sites in the 8-membered ring (8-MR) of mordenite (MOR) are reported to be the active center for dimethyl ether (DME) carbonylation reaction, it is of great importance to selectively increase the Brønsted acid amount in the 8-MR. Herein, a series of Fe-HMOR was prepared through one-pot hydrothermal synthesis by adding the EDTA-Fe complex into the gel. By combining XRD, FTIR, UV-Vis, Raman and XPS, it was found that the Fe atoms selectively substituted for the Al atoms in the 12-MR channels because of the large size of the EDTA-Fe complex. The NH3-TPD and Py-IR results showed that with the increase in Fe addition from Fe/Si = 0 to 0.02, the Brønsted acid sites derived from Si-OH-Al in the 8-MR first increased and then decreased, with the maximum at Fe/Si = 0.01. The Fe-modified MOR with Fe/Si = 0.01 showed the highest activity in DME carbonylation, which was three times that of HMOR. The TG/DTG results indicated that the carbon deposition and heavy coke formation in the spent Fe-HMOR catalysts were inhibited due to Fe addition. This work provides a practical way to design a catalyst with enhanced catalytic performance.

13.
Nat Commun ; 15(1): 4465, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796477

ABSTRACT

High concentrations of organic aerosol (OA) occur in Asian countries, leading to great health burdens. Clean air actions have resulted in significant emission reductions of air pollutants in China. However, long-term nation-wide trends in OA and their causes remain unknown. Here, we present both observational and model evidence demonstrating widespread decreases with a greater reduction in primary OA than in secondary OA (SOA) in China during the period of 2013 to 2020. Most of the decline is attributed to reduced residential fuel burning while the interannual variability in SOA may have been driven by meteorological variations. We find contrasting effects of reducing NOx and SO2 on SOA production which may have led to slight overall increases in SOA. Our findings highlight the importance of clean energy replacements in multiple sectors on achieving air-quality targets because of high OA precursor emissions and fluctuating chemical and meteorological conditions.

14.
Small Methods ; : e2400049, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804235

ABSTRACT

Immobilizing DNA with high accessibility at the interface is attractive but challenging. Current methods often involve multiple chemical reactions and derivatives. In this study, an endonuclease, TC1, is introduced to develop a robust strategy for immobilizing DNA with enhanced accessibility. TC1 enables direct immobilization of DNA onto a solid support through self-catalytic DNA covalent coupling and robust solid adsorption capabilities. This method demonstrates high accessibility to target molecules, supported by the improved sensitivity of DNA hybridization and aptamer-target recognition assays. TC1-mediated DNA immobilization is a one-pot reaction that does not require chemical derivatives, making it promising for the development of high-performance DNA materials and technologies.

15.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Article in English | MEDLINE | ID: mdl-38773797

ABSTRACT

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Osteoporosis , Oxidative Stress , Animals , Autophagy/drug effects , Oxidative Stress/drug effects , Osteoporosis/drug therapy , Osteoporosis/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Male , Rats, Sprague-Dawley , Streptozocin , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Bone Density/drug effects
16.
ACS Nano ; 18(21): 13755-13767, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752610

ABSTRACT

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.


Subject(s)
Capsid Proteins , Capsid , Hydrogels , Nanotubes , Hydrogels/chemistry , Nanotubes/chemistry , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid/chemistry , Capsid/immunology , Levivirus/chemistry , Levivirus/immunology , Levivirus/genetics , Animals , Nanostructures/chemistry , Mice , Models, Molecular
17.
Inorg Chem ; 63(21): 9720-9725, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38757704

ABSTRACT

High-performance nonlinear-optical (NLO) crystals need to simultaneously meet multiple basic and conflicting performance requirements. Here, by using a partial chemical substitution strategy, the first noncentrosymmetric (NCS) PbBeB2O5 crystal with a BeB2O8 group was synthesized, exhibiting a two-dimensional [BeB2O5]∞ layer constructed by interconnecting BeB2O8 groups and bridged PbO4 with an active lone pair. The crystal shows a promising UV NLO functional feature, including a strong SHG effect of 3.5 × KDP (KH2PO4), large birefringence realizing phase matchability in the whole transparency region from 246 to 2500 nm, a short UV absorption edge of 246 nm, and single-crystal easy growth. Remarkably, theoretical studies reveal that the BeB2O8 group has high nonlinear activity, which could stimulate the discovery of a series of excellent NLO beryllium borates.

18.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38818834

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell migration assay data shown in Fig. 4D on p. 4876 were strikingly similar to data that had already been published in different form in another article written by different authors at a different research institute. In addition, a pair of the data panels in Fig. 4D were overlapping, indicating that data derived from the same original source had been used to represent what were intended to be the results obtained from differently performed experiments.  Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 13: 4872­4878, 2016; DOI: 10.3892/mmr.2016.5127].

19.
Biodes Res ; 6: 0032, 2024.
Article in English | MEDLINE | ID: mdl-38716149

ABSTRACT

Messenger RNA (mRNA) therapeutics hold great potential in the prevention and treatment of many diseases owing to several unique advantages. Delivery of mRNA into target cells is a critical step in mRNA therapy. Efficient and safe delivery systems remain an urgent need. Here, we provide an overview of the current applications of protein nanocages (PNCs), which include different types of PNCs, such as viral capsids, nonviral PNCs, and artificial PNCs, in mRNA delivery. PNCs have the features of uniform size, controllable assembly, modifiable inner and outer surfaces, good biocompatibility, and biodegradability, making them ideal candidates for mRNA delivery. In this review, the properties, loading strategies, and delivery outcomes of each tested PNC are introduced. The challenges faced by PNC-based mRNA carriers are discussed. We also share our perspectives on possible strategies to address these challenges, emphasizing the opportunities brought by emerging technologies and disciplinary convergence.

20.
Mediators Inflamm ; 2024: 9986187, 2024.
Article in English | MEDLINE | ID: mdl-38716374

ABSTRACT

Objective: Fetal growth restriction (FGR) is a significant contributor to negative pregnancy and postnatal developmental outcomes. Currently, the exact pathological mechanism of FGR remains unknown. This study aims to utilize multiomics sequencing technology to investigate potential relationships among mRNA, gut microbiota, and metabolism in order to establish a theoretical foundation for diagnosing and understanding the molecular mechanisms underlying FGR. Methods: In this study, 11 healthy pregnant women and nine pregnant women with FGR were divided into Control group and FGR group based on the health status. Umbilical cord blood, maternal serum, feces, and placental tissue samples were collected during delivery. RNA sequencing, 16S rRNA sequencing, and metabolomics methods were applied to analyze changes in umbilical cord blood circulating mRNA, fecal microbiota, and metabolites. RT-qPCR, ELISA, or western blot were used to detect the expression of top 5 differential circulating mRNA in neonatal cord blood, maternal serum, or placental tissue samples. Correlation between differential circulating mRNA, microbiota, and metabolites was analyzed by the Spearman coefficient. Results: The top 5 mRNA genes in FGR were altered with the downregulation of TRIM34, DEFA3, DEFA1B, DEFA1, and QPC, and the upregulation of CHPT1, SMOX, FAM83A, GDF15, and NAPG in newborn umbilical cord blood, maternal serum, and placental tissue. The abundance of Bacteroides, Akkermansia, Eubacterium_coprostanoligenes_group, Phascolarctobacterium, Parasutterella, Odoribacter, Lachnospiraceae_UCG_010, and Dielma were significantly enriched in the FGR group. Metabolites such as aspartic acid, methionine, alanine, L-tryptophan, 3-methyl-2-oxovalerate, and ketoleucine showed notable functional alterations. Spearman correlation analysis indicated that metabolites like methionine and alanine, microbiota (Tyzzerella), and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) might play a role as mediators in the communication between the gut and circulatory system interaction in FGR. Conclusion: Metabolites (METHIONINE, alanine) as well as microbiota (Tyzzerella) and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) were possible mediators that communicated the interaction between the gut and circulatory systems in FGR.


Subject(s)
Fetal Growth Retardation , Gastrointestinal Microbiome , RNA, Messenger , Humans , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/microbiology , Pregnancy , RNA, Messenger/metabolism , Adult , Fetal Blood/metabolism , RNA, Ribosomal, 16S/genetics , Placenta/metabolism , Placenta/microbiology , Feces/microbiology , Infant, Newborn , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...