Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(11): 16619-16638, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154221

ABSTRACT

Before being captured by observers, the information carried by light may be attenuated by the transmission medium. According to the atmospheric scattering model, this attenuation is wavelength-dependent and increases with distance. However, most existing haze removal methods ignore this wavelength dependency and therefore cannot handle well the color distortions caused by it. To solve this problem, we propose a scattering coefficient awareness method based on the image formation model. The proposed method first makes an initial transmission estimation by the dark channel prior and then calculates the scattering coefficient ratios based on the initial transmission map and the grey pixels in the image. After that, fine transmission maps in RGB channels are calculated from these ratios and compensated for in sky areas. A global correction is also applied to eliminate the color bias induced by the light source before the final output. Qualitatively and quantitatively compared on synthetic and real images against state-of-the-art methods, the proposed method provides better results for the scenes with either white fog or colorized haze.

2.
Opt Express ; 28(5): 5953-5964, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225854

ABSTRACT

The limited dynamic range of regular screens restricts the display of high dynamic range (HDR) images. Inspired by retinal processing mechanisms, we propose a tone mapping method to address this problem. In the retina, horizontal cells (HCs) adaptively adjust their receptive field (RF) size based on the local stimuli to regulate the visual signals absorbed by photoreceptors. Using this adaptive mechanism, the proposed method compresses the dynamic range locally in different regions, and has the capability of avoiding halo artifacts around the edges of high luminance contrast. Moreover, the proposed method introduces the center-surround antagonistic RF structure of bipolar cells (BCs) to enhance the local contrast and details. Extensive experiments show that the proposed method performs robustly well on a wide variety of images, providing competitive results against the state-of-the-art methods in terms of visual inspection, objective metrics and observer scores.


Subject(s)
Algorithms , Image Enhancement , Retina/diagnostic imaging , Adult , Female , Humans , Male , Retina/cytology , Retinal Bipolar Cells/cytology , Time Factors , Young Adult
3.
Article in English | MEDLINE | ID: mdl-31562084

ABSTRACT

Image enhancement is an important pre-processing step for many computer vision applications especially regarding the scenes in poor visibility conditions. In this work, we develop a unified two-pathway model inspired by the biological vision, especially the early visual mechanisms, which contributes to image enhancement tasks including low dynamic range (LDR) image enhancement and high dynamic range (HDR) image tone mapping. Firstly, the input image is separated and sent into two visual pathways: structure-pathway and detail-pathway, corresponding to the M-and P-pathway in the early visual system, which code the low-and high-frequency visual information, respectively. In the structure-pathway, an extended biological normalization model is used to integrate the global and local luminance adaptation, which can handle the visual scenes with varying illuminations. On the other hand, the detail enhancement and local noise suppression are achieved in the detail-pathway based on local energy weighting. Finally, the outputs of structure-and detail-pathway are integrated to achieve the low-light image enhancement. In addition, the proposed model can also be used for tone mapping of HDR images with some fine-tuning steps. Extensive experiments on three datasets (two LDR image datasets and one HDR scene dataset) show that the proposed model can handle the visual enhancement tasks mentioned above efficiently and outperform the related state-of-the-art methods.

4.
IEEE Trans Image Process ; 28(11): 5580-5595, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31180853

ABSTRACT

We propose an underwater image enhancement model inspired by the morphology and function of the teleost fish retina. We aim to solve the problems of underwater image degradation raised by the blurring and nonuniform color biasing. In particular, the feedback from color-sensitive horizontal cells to cones and a red channel compensation are used to correct the nonuniform color bias. The center-surround opponent mechanism of the bipolar cells and the feedback from amacrine cells to interplexiform cells then to horizontal cells serve to enhance the edges and contrasts of the output image. The ganglion cells with color-opponent mechanism are used for color enhancement and color correction. Finally, we adopt a luminance-based fusion strategy to reconstruct the enhanced image from the outputs of ON and OFF pathways of fish retina. Our model utilizes the global statistics (i.e., image contrast) to automatically guide the design of each low-level filter, which realizes the self-adaption of the main parameters. Extensive qualitative and quantitative evaluations on various underwater scenes validate the competitive performance of our technique. Our model also significantly improves the accuracy of transmission map estimation and local feature point matching using the underwater image. Our method is a single image approach that does not require the specialized prior about the underwater condition or scene structure.


Subject(s)
Color Vision/physiology , Image Processing, Computer-Assisted/methods , Models, Neurological , Retina/physiology , Algorithms , Animals , Fishes/physiology , Retinal Ganglion Cells/physiology , Signal Processing, Computer-Assisted , Water/physiology
5.
IEEE Trans Image Process ; 25(3): 1219-32, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26766375

ABSTRACT

In this paper, we propose a novel model for the computational color constancy, inspired by the amazing ability of the human vision system (HVS) to perceive the color of objects largely constant as the light source color changes. The proposed model imitates the color processing mechanisms in the specific level of the retina, the first stage of the HVS, from the adaptation emerging in the layers of cone photoreceptors and horizontal cells (HCs) to the color-opponent mechanism and disinhibition effect of the non-classical receptive field in the layer of retinal ganglion cells (RGCs). In particular, HC modulation provides a global color correction with cone-specific lateral gain control, and the following RGCs refine the processing with iterative adaptation until all the three opponent channels reach their stable states (i.e., obtain stable outputs). Instead of explicitly estimating the scene illuminant(s), such as most existing algorithms, our model directly removes the effect of scene illuminant. Evaluations on four commonly used color constancy data sets show that the proposed model produces competitive results in comparison with the state-of-the-art methods for the scenes under either single or multiple illuminants. The results indicate that single opponency, especially the disinhibitory effect emerging in the receptive field's subunit-structured surround of RGCs, plays an important role in removing scene illuminant(s) by inherently distinguishing the spatial structures of surfaces from extensive illuminant(s).


Subject(s)
Color Perception/physiology , Image Processing, Computer-Assisted/methods , Models, Neurological , Retina/physiology , Retinal Ganglion Cells/physiology , Algorithms , Humans
6.
Front Comput Neurosci ; 9: 151, 2015.
Article in English | MEDLINE | ID: mdl-26733857

ABSTRACT

The mammalian retina seems far smarter than scientists have believed so far. Inspired by the visual processing mechanisms in the retina, from the layer of photoreceptors to the layer of retinal ganglion cells (RGCs), we propose a computational model for haze removal from a single input image, which is an important issue in the field of image enhancement. In particular, the bipolar cells serve to roughly remove the low-frequency of haze, and the amacrine cells modulate the output of cone bipolar cells to compensate the loss of details by increasing the image contrast. Then the RGCs with disinhibitory receptive field surround refine the local haze removal as well as the image detail enhancement. Results on a variety of real-world and synthetic hazy images show that the proposed model yields results comparative to or even better than the state-of-the-art methods, having the advantage of simultaneous dehazing and enhancing of single hazy image with simple and straightforward implementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...