Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Asian-Australas J Anim Sci ; 33(2): 187-196, 2020 02 01.
Article in English | MEDLINE | ID: mdl-30744329

ABSTRACT

BACKGROUND: Porcine respiratory disease is one of the most important health problems which causes significant economic losses. OBJECTIVE: To understand the genetic basis for susceptibility to swine enzootic pneumonia (EP) in pigs, we detected 102,809 SNPs in a total of 249 individuals based on genome-wide sequencing data. METHODS: Genome comparison of three susceptibility to swine EP pig breeds (Jinhua, Erhualian and Meishan) with two western lines that are considered more resistant (Duroc and Landrace) using XP-EHH and FST statistical approaches identified 691 positively selected genes. Based on QTLs, GO terms and literature search, we selected 14 candidate genes that have convincible biological functions associated with swine EP or human asthma. RESULTS: Most of these genes were tested by several methods including transcription analysis and candidated genes association study. Among these genes: CYP1A1 and CTNNB1 are involved in fertility; TGFBR3 plays a role in meat quality traits; WNT2, CTNNB1 and TCF7 take part in adipogenesis and fat deposition simultaneously; PLAUR (completely linked to AXL, r2=1) plays an essential role in the successful ovulation of matured oocytes in pigs; CLPSL2 (strongly linked to SPDEF, r2=0.848) is involved in male fertility. CONCLUSION: These adverse genes susceptible to swine EP may be selected while selecting for economic traits (especially reproduction traits) due to pleiotropic and hitchhiking effect of linked genes. Our study provided a completely new point of view to understand the genetic basis for susceptibility or resistance to swine EP in pigs thereby, provide insight for designing sustainable breed selection programs. Finally, the candidate genes are crucial due to their potential roles in respiratory diseases in a large number of species, including human.

2.
Evol Bioinform Online ; 15: 1176934318825082, 2019.
Article in English | MEDLINE | ID: mdl-30718942

ABSTRACT

Chinese indigenous pigs in the Taihu Lake region are well known for their high fecundity and other excellent characteristics. To better understand the characteristics of these breeds in this area as well as to provide the government and breeders the molecular basis for formulating a reasonable conservation policy, we explored the structure of haplotype blocks and genetic diversity of the 7 populations which is relevant for the management and conservation of these important genetic resources using next-generation sequencing data. In this study, a total of 131 300 single-nucleotide polymorphisms with minor allele frequencies ⩾0.05 were obtained for further analysis. In general, there are similar within-breed genetic diversities (He, Ho, Pn, Ar) among these 7 pig populations in the Taihu Lake region. Average values for the inbreeding coefficients estimates in the 7 populations are 0.110 (F1), 0.056 (F2), and 0.078 (F3). All the breeds have seen a continuous decline in Ne estimates over time with FJ and SW populations having a very similar curve. Moreover, the Ne of SMS pig breeds were smaller than other Chinese pig breeds, indicating that SMS pig breeds underwent stronger selection pressure than other Chinese pig breeds. The average genetic distances among the 7 populations in the Taihu Lake region were 0.235 (MMS), 0.240 (SMS), 0.269 (EH), 0.248 (MI), 0.221 (FJ), 0.254 (JX), and 0.212 (SW). A summary of the number of haplotype blocks and haplotype diversity was also presented. This study provide a deep understanding of the current situation of conservation in this region, thereby uncovering the pertinent insight to better formulate more reasonable preservation policies for the government departments and breeding planners to follow-up.

3.
G3 (Bethesda) ; 8(2): 469-476, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29187421

ABSTRACT

The Dongxiang Blue-shelled chicken is one of the most valuable Chinese indigenous poultry breeds. However, compared to the Italian native White Leghorn, although this Chinese breed possesses numerous favorable characteristics, it also exhibits lower growth performance and fertility. Here, we utilized genotyping sequencing data obtained via genome reduction on a sequencing platform to detect 100,114 single nucleotide polymorphisms and perform further biological analysis and functional annotation. We employed cross-population extended haplotype homozygosity, eigenvector decomposition combined with genome-wide association studies (EigenGWAS), and efficient mixed-model association expedited methods to detect areas of the genome that are potential selected regions (PSR) in both chicken breeds, and performed gene ontology (GO) enrichment and quantitative trait loci (QTL) analyses annotating using the Kyoto Encyclopedia of Genes and Genomes. The results of this study revealed a total of 2424 outlier loci (p-value <0.01), of which 2144 occur in the White Leghorn breed and 280 occur in the Dongxiang Blue-shelled chicken. These correspond to 327 and 94 PSRs containing 297 and 54 genes, respectively. The most significantly selected genes in Blue-shelled chicken are TMEM141 and CLIC3, while the SLCO1B3 gene, related to eggshell color, was identified via EigenGWAS. We show that the White Leghorn genes JARID2, RBMS3, GPC3, TRIB2, ROBO1, SAMSN1, OSBP2, and IGFALS are involved in immunity, reproduction, and growth, and thus might represent footprints of the selection process. In contrast, we identified six significantly enriched pathways in the Dongxiang Blue-shelled chicken that are related to amino acid and lipid metabolism as well as signal transduction. Our results also reveal the presence of a GO term associated with cell metabolism that occurs mainly in the White Leghorn breed, while the most significant QTL regions mapped to the Chicken QTL Database (GG_4.0) for the Dongxiang Blue-shelled breed are predominantly related to lesions, bone mineral content, and other related traits compared to tibia length and body weight (i.e., at 14, 28, 42, and 70 d) in the White Leghorn. The results of this study highlight differences in growth, immunity, and egg quality traits between the two breeds, and provide a foundation for the exploration of their genetic mechanisms.


Subject(s)
Chickens/genetics , Egg Shell/metabolism , Pigmentation/genetics , Sequence Analysis, DNA/methods , Animals , Chickens/classification , Color , Gene Ontology , Genome-Wide Association Study , Genomics/methods , Genotype , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Species Specificity
4.
Yi Chuan ; 25(6): 663-8, 2003 Nov.
Article in Chinese | MEDLINE | ID: mdl-15639955

ABSTRACT

Using usual method, we got karyotype of hybrid pig (wild soar (male symbol) x domestic pig (female symbol)), C-band and approximate 174 bands of G-band, and we also obtained approximate 258 bands of high resolution G-band by micro-Colchicin method. The result indicate that the diploid chromosome number is 2n=38; there is polymorphism in C-band,and compared with domestic pig in G-band and high resolution G-band there is no distinguish difference. They belong to the same seed.

SELECTION OF CITATIONS
SEARCH DETAIL
...