Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 12(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34442559

ABSTRACT

Demagnetization effect plays an important role in the magnetic core design of the orthogonal fluxgate sensor. In this paper, a meander-core orthogonal fluxgate sensor based on amorphous ribbon is described. The demagnetization model of meander-core structures is established, and the average demagnetization factor can be evaluated by finite element modeling. Simulation and experimental analyses were performed to study the effects of demagnetization on the sensitivity and linear range of orthogonal fluxgate sensors in the fundamental mode by varying the number of strips, the line width, and the spacing of the meander-cores. The results were compared and revealed a very close match. The results show that the demagnetization factor increases with an increase in the number of strips and the line width, which leads to an increase in the linear range of the sensors. The sensitivity can be improved by increasing the number of strips appropriately, however, it is reduced when the line width increases. Smaller spacing results in a larger demagnetization factor due to the magnetic interactions between adjacent strips, which reduces the sensitivity of the sensor. The results obtained here from simulations and experiments are useful for designing magnetic sensors with similar structures.

2.
Water Sci Technol ; 83(8): 1834-1846, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33905356

ABSTRACT

Negative ions powders (NIP) have been widely applied in many fields because of their natural electric field and far infrared radiation, especially in wastewater treatment. In this study, the NIP was first introduced into Fe3O4/H2O2 system to degrade methylene blue (MB). The MB removal was completely achieved at 5 h via a non-photochemical pathway and the degradation rate constant of this system is about 0.565 h-1, which is about 16 times higher than in Fe3O4/H2O2 Fenton-like system (0.035 h-1). In addition, the results of quenching experiments indicate that the electron (e-) and negative oxygen ion (•O2-) are the main reactive species. It was determined that Fe3O4@NIP is the effective component that leads to the activation of H2O2 to produce •OH, which derive from the pathway: NIP acts as an electron donor to reduce Fe(III) into Fe(II). Moreover, NIP can produce negative ions, which is also conductive to degradation. This study suggests a promising direction for the practical application of NIP based catalysis by integrating it with the Fe(III)/Fe(II) transformation process.


Subject(s)
Hydrogen Peroxide , Methylene Blue , Ferric Compounds , Ferrous Compounds , Oxidation-Reduction , Powders
3.
PeerJ ; 9: e10739, 2021.
Article in English | MEDLINE | ID: mdl-33604178

ABSTRACT

Strawberries are one of the most economically important berry fruits worldwide and exhibit colours ranging from white to dark red, providing a rich genetic resource for strawberry quality improvement. In the present study, we conducted transcriptome analyses of three strawberry cultivars, namely, 'Benihoppe', 'Xiaobai', and 'Snow White', and compared their gene expression profiles. Among the high-quality sequences, 5,049 and 53,200 differentially expressed genes (DEGs) were obtained when comparing the diploid and octoploid strawberry genomes and analysed to identify anthocyanin-related candidate genes. Sixty-five DEGs in the diploid genome (transcriptome data compared to the diploid strawberry genome) and 317 DEGs in the octoploid genome (transcriptome data compared to the octoploid strawberry genome) were identified among the three cultivars. Among these DEGs, 19 and 70 anthocyanin pathway genes, six and 42 sugar pathway genes, 23 and 101 hormone pathway genes, and 17 and 104 transcription factors in the diploid and octoploid genomes, respectively, correlated positively or negatively with the anthocyanin accumulation observed among the three cultivars. Real-time qPCR analysis of nine candidate genes showed a good correlation with the transcriptome data. For example, the expression of PAL was higher in 'Benihoppe' and 'Xiaobai' than in 'Snow White', consistent with the RNA-seq data. Thus, the RNA-seq data and candidate DEGs identified in the present study provide a sound basis for further studies of strawberry fruit colour formation.

4.
BMC Plant Biol ; 19(1): 6, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30606101

ABSTRACT

BACKGROUND: The extensive adaptability of polyploidy wheat is attributed to its complex genome, and accurately controlling heading stage is a prime target in wheat breeding process. Wheat heading stage is an essential growth and development processes since it starts at a crucial point in the transition from vegetative phase to reproductive phase. MAIN BODY: Heading stage is mainly decided by vernalization, photoperiod, hormone (like gibberellic acid, GA), and earliness per se (Eps). As a polyploidy species, common wheat possesses the abundant genetic variation, such as allelic variation, copy number variation etc., which have a strong effect on regulation of wheat growth and development. Therefore, understanding genetic manipulation of heading stage is pivotal for controlling the heading stage in wheat. In this review, we summarized the recent advances in the genetic regulatory mechanisms and abundant variation in genetic diversity controlling heading stage in wheat, as well as the interaction mechanism of different signals and the contribution of different genetic variation. We first summarized the genes involved in vernalization, photoperoid and other signals cross-talk with each other to control wheat heading stage, then the abundant genetic variation related to signal components associated with wheat heading stage was also elaborated in detail. CONCLUSION: Our knowledge of the regulatory network of wheat heading can be used to adjust the duration of the growth phase for the purpose of acclimatizing to different geographical environments.


Subject(s)
Gene Regulatory Networks/genetics , Genetic Variation/genetics , Polyploidy , Triticum/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Genetic Variation/physiology , Signal Transduction/genetics , Triticum/growth & development
5.
Theor Appl Genet ; 131(11): 2271-2285, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30218294

ABSTRACT

Heading date is one of the most important traits in wheat breeding as it affects adaptation and yield potential. A genome-wide association study (GWAS) using the 90 K iSelect SNP genotyping assay indicated that a total of 306 loci were significantly associated with heading and flowering dates in 13 environments in Chinese common wheat from the Yellow and Huai wheat region. Of these, 105 loci were significantly correlated with both heading and flowering dates and were found in clusters on chromosomes 2, 5, 6, and 7. Based on differences in distribution of the vernalization and photoperiod genes among chromosomes, arms, or block regions, 13 novel, environmentally stable genetic loci were associated with heading and flowering dates, including RAC875_c41145_189 on 1DS, RAC875_c50422_299 on 2BL, and RAC875_c48703_148 on 2DS, that accounted for more than 20% phenotypic variance explained (PVE) of the heading/flowering date in at least four environments. GWAS and t test of a combination of SNPs and vernalization and photoperiod alleles indicated that the Vrn-B1, Vrn-D1, and Ppd-D1 genes significantly affect heading and flowering dates in Chinese common wheat. Based on the association of heading and flowering dates with the vernalization and photoperiod alleles at seven loci and three significant SNPs, optimal linear regression equations were established, which show that of the seven loci, the Ppd-D1 gene plays the most important role in modulating heading and flowering dates in Chinese wheat, followed by Vrn-B1 and Vrn-D1. Additionally, three novel genetic loci (RAC875_c41145_189, Excalibur_c60164_137, and RAC875_c50422_299) also show important effect on heading and flowering dates. Therefore, Ppd-D1, Vrn-B1, Vrn-D1, and the novel genetic loci should be further investigated in terms of improving heading and flowering dates in Chinese wheat. Further quantitative analysis of an F10 recombinant inbred lines population identified a major QTL that controls heading and flowering dates within the Ppd-D1 locus with PVEs of 28.4% and 34.0%, respectively; this QTL was also significantly associated with spike length, peduncle length, fertile spikelets number, cold resistance, and tiller number.


Subject(s)
Flowers/physiology , Genetic Association Studies , Triticum/genetics , Chromosome Mapping , Flowers/genetics , Genes, Plant , Linear Models , Phenotype , Photoperiod , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/physiology
6.
Neural Comput ; 29(11): 3094-3117, 2017 11.
Article in English | MEDLINE | ID: mdl-28957026

ABSTRACT

The traditional [Formula: see text]-means algorithm has been widely used as a simple and efficient clustering method. However, the performance of this algorithm is highly dependent on the selection of initial cluster centers. Therefore, the method adopted for choosing initial cluster centers is extremely important. In this letter, we redefine the density of points according to the number of its neighbors, as well as the distance between points and their neighbors. In addition, we define a new distance measure that considers both Euclidean distance and density. Based on that, we propose an algorithm for selecting initial cluster centers that can dynamically adjust the weighting parameter. Furthermore, we propose a new internal clustering validation measure, the clustering validation index based on the neighbors (CVN), which can be exploited to select the optimal result among multiple clustering results. Experimental results show that the proposed algorithm outperforms existing initialization methods on real-world data sets and demonstrates the adaptability of the proposed algorithm to data sets with various characteristics.

7.
PLoS One ; 12(5): e0178090, 2017.
Article in English | MEDLINE | ID: mdl-28542537

ABSTRACT

The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated
8.
Plant Biotechnol J ; 15(8): 953-969, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28055148

ABSTRACT

Bread wheat is a leading cereal crop worldwide. Limited amount of superior allele loci restricted the progress of molecular improvement in wheat breeding. Here, we revealed new allelic variation distribution for 13 yield-related traits in series of genome-wide association studies (GWAS) using the wheat 90K genotyping assay, characterized in 163 bread wheat cultivars. Agronomic traits were investigated in 14 environments at three locations over 3 years. After filtering SNP data sets, GWAS using 20 689 high-quality SNPs associated 1769 significant loci that explained, on average, ~20% of the phenotypic variation, both detected already reported loci and new promising genomic regions. Of these, repetitive and pleiotropic SNPs on chromosomes 6AS, 6AL, 6BS, 5BL and 7AS were significantly linked to thousand kernel weight, for example BS00021705_51 on 6BS and wsnp_Ex_c32624_41252144 on 6AS, with phenotypic variation explained (PVE) of ~24%, consistently identified in 12 and 13 of the 14 environments, respectively. Kernel length-related SNPs were mainly identified on chromosomes 7BS, 6AS, 5AL and 5BL. Plant height-related SNPs on chromosomes 4DS, 6DL, 2DS and 1BL were, respectively, identified in more than 11 environments, with averaged PVE of ~55%. Four SNPs were confirmed to be important genetic loci in two RIL populations. Based on repetivity and PVE, a total of 41 SNP loci possibly played the key role in modulating yield-related traits of the cultivars surveyed. Distribution of superior alleles at the 41 SNP loci indicated that superior alleles were getting popular with time and modern cultivars had integrated many superior alleles, especially for peduncle length- and plant height-related superior alleles. However, there were still 19 SNP loci showing less than percentages of 50% in modern cultivars, suggesting they should be paid more attention to improve yield-related traits of cultivars in the Yellow and Huai wheat region. This study could provide useful information for dissection of yield-related traits and valuable genetic loci for marker-assisted selection in Chinese wheat breeding programme.


Subject(s)
Genome-Wide Association Study/methods , Triticum/genetics , Alleles , China , Chromosomes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
9.
Gene ; 575(2 Pt 1): 285-93, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26342963

ABSTRACT

Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics.


Subject(s)
Gene Expression Regulation, Plant , Mutation , Plant Proteins/biosynthesis , Stress, Physiological , Transcriptome , Triticum/metabolism , China , Ethyl Methanesulfonate/toxicity , Mutagenesis/drug effects , Plant Proteins/genetics , Triticum/genetics
10.
PLoS One ; 10(9): e0137773, 2015.
Article in English | MEDLINE | ID: mdl-26372220

ABSTRACT

Wheat is one of the main food sources worldwide; large amount studies have been conducted to improve wheat production. MicroRNAs (miRNAs) with about 20-30 nucleotide are a class of regulatory small RNAs (sRNAs), which could regulate gene expression through sequence-specific base pairing with target mRNAs, playing important roles in plant growth. An ideal plant architecture (IPA) is crucial to enhance yield in bread wheat. In this study, the high-yield wheat strain Yunong 3114 was EMS-mutagenesis from the wild-type strain Yunong 201, exhibiting a preferable plant structure compared with the wild-type strain. We constructed small RNA and degradome libraries from Yunong 201 and Yunong 3114, and performed small RNA sequencing of these libraries in order identify miRNAs and their targets related to IPA in wheat. Totally, we identified 488 known and 837 novel miRNAs from Yunong 3114 and 391 known and 533 novel miRNAs from Yunong 201. The number of miRNAs in the mutant increased. A total of 37 known and 432 putative novel miRNAs were specifically expressed in the mutant strain; furthermore, 23 known and 159 putative novel miRNAs were specifically expressed in the wild-type strain. A total of 150 known and 100 novel miRNAs were differentially expressed between mutant and wild-type strains. Among these differentially expressed novel miRNAs, 4 and 8 predict novel miRNAs were evidenced by degradome sequencing and showed up-regulated and down-regulated expressions in the mutant strain Yunong 3114, respectively. Targeted gene annotation and previous results indicated that this set of miRNAs is related to plant structure. Our results further suggested that miRNAs may be necessary to obtain an optimal wheat structure.


Subject(s)
Computational Biology , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Mutation , Sequence Analysis, RNA , Triticum/growth & development , Triticum/genetics , MicroRNAs/chemistry
11.
Front Plant Sci ; 6: 470, 2015.
Article in English | MEDLINE | ID: mdl-26191066

ABSTRACT

A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs) of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box) in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity.

12.
Front Plant Sci ; 6: 1166, 2015.
Article in English | MEDLINE | ID: mdl-26779195

ABSTRACT

TaGS5 genes were cloned from bread wheat and were physically mapped on 3AS and 3DS. Sequencing results revealed that a SNP was found in the sixth exon of TaGS5-A1 gene. The SNP resulted in amino acid change from alanine to serine at the 303 bp position of TaGS5-A1. These two alleles were designated as TaGS5-A1a (alanine at the 303 bp position) and TaGS5-A1b genes (serine at the 303-bp position). Analysis of association of TaGS5-A1 alleles with agronomic traits indicated that cultivars with TaGS5-A1b possessed wider kernel width and higher thousand-kernel weight, as well as significantly lower plant height, spike length, and internode length below spike than those of cultivars with TaGS5-A1a over 3 years. These trait differences between TaGS5-A1a and TaGS5-A1b genotypes were larger in landraces than in modern cultivars. This finding suggested that TaGS5 gene played an important role in modulating yield-related traits in the landraces, which possibly resulted from numerous superior genes gathering in modern cultivars after strong artificial selection. The preferred TaGS5-A1b haplotype underwent very strong positive selection in Chinese modern wheat breeding, but not in Chinese landraces. Expression analysis of the TaGS5-A1 gene indicated that TaGS5-A1b allele possessed significantly higher expression level than TaGS5-A1b allele in differently developmental seeds. This study could provide relatively superior genotype in view of agronomic traits in wheat breeding programs. Likewise, this study could offer important information for the dissection of molecular and genetic basis of yield-related traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...