Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Water Res ; 254: 121401, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447378

ABSTRACT

Although being viewed as a promising technology for reclamation of carbon and phosphorus from excess sludge, anaerobic fermentation (AF) grapples with issues such as a low yield of volatile fatty acids (VFAs) and high phosphorus recovery costs. In this study, we synthesized Fe3O4@MOF-808 (FeM) with abundant defects and employed it to simultaneously enhance VFAs and phosphorus recovery during sludge anaerobic fermentation. Through pre-oxidization of sludge catalyzed by FeM-induced peroxydisulfate, the soluble organic matter increased by 2.54 times, thus providing ample substrate for VFAs production. Subsequent AF revealed a remarkable 732.73 % increase in VFAs and a 1592.95 % increase in phosphate. Factors contributing to the high VFAs yield include the non-biological catalysis of unsaturated Zr active sites in defective FeM, enhancing protein hydrolysis, and the inhibition of methanogenesis due to electron competition arising from the transformation between Fe(III) and Fe(II) under Zr influence. Remarkably, FeM exhibited an adsorption capacity of up to 92.64 % for dissolved phosphate through ligand exchange and electrostatic attractions. Furthermore, FeM demonstrated magnetic separation capability from the fermentation broth, coupled with excellent stability and reusability in both catalysis and adsorption processes.


Subject(s)
Phosphorus , Sewage , Fermentation , Sewage/chemistry , Anaerobiosis , Carbon , Ferric Compounds , Fatty Acids, Volatile/metabolism , Phosphates , Hydrogen-Ion Concentration
2.
BMC Genomics ; 25(1): 236, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438962

ABSTRACT

BACKGROUND: The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS: Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION: We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.


Subject(s)
Ferroptosis , Vitiligo , Humans , Vitiligo/genetics , RNA-Binding Proteins/genetics , Melanocytes , RNA , Fusion Regulatory Protein 1, Heavy Chain
3.
Helicobacter ; 28(6): e13016, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37623311

ABSTRACT

BACKGROUND: Helicobacter pylori is one of the most common chronic bacterial infections. Active eradication of H. pylori infection is rare due to the fact that most infected patients are asymptomatic and the use of large amounts of antibiotics in eradication therapy leads to severe side effects. Urolithin B (UB) is an additional major intestinal metabolite of ellagic acid (EA), which has been shown to possess anti-inflammatory, antioxidant, and antiapoptotic biological activities. Preventing the incidence of H. pylori-related gastric disease and reducing the damage to the host by H. pylori is a current approach to control H. pylori infection. In this study, we explored the effect of UB on H. pylori infection. MATERIALS AND METHODS: The effects of UB on inflammation and oxidative stress induced by H. pylori in vivo and in vitro were investigated by qPCR, ELISA, HE staining, IHC staining, etc. RESULTS: UB reduced the adhesion and colonization of H. pylori and improved H. pylori-induced inflammation and oxidative stress in vivo and in vitro. Moreover, UB had better anti-inflammatory and antioxidant effects than clarithromycin (CLR) and metronidazole (MET). In addition to inhibiting the secretion of CagA, UB reduced tissue damage by H. pylori infection. CONCLUSIONS: UB was effective in improving damage caused by H. pylori.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Animals , Mice , Helicobacter Infections/microbiology , Gastric Mucosa/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/metabolism , Clarithromycin/therapeutic use , Metronidazole/pharmacology , Metronidazole/therapeutic use , Oxidative Stress , Inflammation/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Drug Therapy, Combination
4.
Cancer Cell ; 41(2): 356-372.e10, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36706760

ABSTRACT

Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , Humans , Neutrophils , Neoplasms/drug therapy , Neoplasms/metabolism , Leukotriene B4/metabolism , Leukotriene B4/pharmacology , Tumor Necrosis Factor-alpha/metabolism
5.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560309

ABSTRACT

In push-broom hyperspectral imaging systems, the sensor rotation to the optical plane leads to linear spatial misregistration (LSM) in hyperspectral images (HSIs). To compensate for hardware defects through software, this paper develops four methods to detect LSM in HSIs. Different from traditional methods for grayscale images, the method of fitting the sum of abundance (FSAM) and the method of searching for equal abundance (SEAM) are achieved by hyperspectral unmixing for a selected rectangular transition areas containing an edge, which makes good use of spatial and spectral information. The method based on line detection for band-interleaved-by-line (BIL) images (LDBM) and the method based on the Fourier transform of BIL images (FTBM) aim to characterize the slope of line structure in BIL images and get rid of the dependence on scene and wavelength. A full strategy is detailed from aspects of data selection, LSM detection, and image correction. The full spectrum airborne hyperspectral imager (FAHI) is China's new generation push-broom scanner. The HSIs obtained by FAHI are tested and analyzed. Experiments on simulation data compare the four proposed methods with traditional methods and prove that FSAM outperforms other methods in terms of accuracy and stability. In experiments on real data, the application of the full strategy on FAHI verifies its effectiveness. This work not only provides reference for other push-broom imagers with similar problems, but also helps to reduce the requirement for hardware calibration.

6.
Biomed Pharmacother ; 156: 113900, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36283224

ABSTRACT

Snake venom is considered a "toxin arsenal", and it often induces a series of clinical and pathophysiological symptoms in snakebite victims. Interestingly, toxin inhibitors are commonly found in the serum of snakes and their predators. Sinonatrix annularis is a type of non-venomous snake that was reported to contain an "inhibitor cocktail", including phospholipase A2 inhibitors (PLIs), metalloproteinase inhibitors (SVMPIs), and small serum protein (SSP). However, the sequences and activities of these components remain obscure. In this study, we performed envenomation challenges on S. annularis using venoms from Deinagkistrodon acutus, Agkistrodon halys and Naja atra. In brief, the maximum injected amount of venom was 360 mg/kg for D. acutus, 72 mg/kg for A. halys, and 18 mg/kg for N. atra. The mRNA expression of the inhibitors PLIα, PLIß, PLIγ, SVMPI, serpin A1, and SSP showed a dose-dependent effect on envenomation. Liver homogenate from S. annularis (LH) was prepared and used to evaluate its inhibitory effect on snake venoms. As a result, LH showed significant neutralization of venom PLA2, mitigated hemorrhage, venom-induced muscle damage, and system toxicity. In the presence of LH, envenomated mice exhibited attenuated inflammation, apoptosis, oxidative damage, and mitigated changes in serum biochemical markers caused by venom. The study reveals the secret of "natural immunity" in snakes, namely, the "antivenom", which consists of an inhibitor proteome or cocktail.


Subject(s)
Antidotes , Snake Bites , Mice , Animals , Snake Venoms , Antivenins/pharmacology , Snake Bites/drug therapy , Liver/metabolism
7.
Front Neurorobot ; 16: 1055056, 2022.
Article in English | MEDLINE | ID: mdl-36704716

ABSTRACT

Studying the task assignment problem of multiple underwater robots has a broad effect on the field of underwater exploration and can be helpful in military, fishery, and energy. However, to the best of our knowledge, few studies have focused on multi-constrained underwater detection task assignment for heterogeneous autonomous underwater vehicle (AUV) clusters with autonomous decision-making capabilities, and the current popular heuristic methods have difficulty obtaining optimal cluster unit task assignment results. In this paper, a fast graph pointer network (FGPN) method, which is a hybrid of graph pointer network (GPN) and genetic algorithm, is proposed to solve the task assignment problem of detection/communication AUV clusters, and to improve the assignment efficiency on the basis of ensuring the accuracy of task assignment. A two-stage detection algorithm is used. First, the task nodes are clustered and pre-grouped according to the communication distance. Then, according to the clustering results, a neural network model based on graph pointer network is used to solve the local task assignment results. A large-scale cluster cooperative task assignment problem and a detection/communication cooperative work mode are proposed, which transform the cooperative cooperation problem of heterogeneous AUV clusters into a Multiple Traveling salesman problem (MTSP) for solving. We also conducted a large number of experiments to verify the effectiveness of the algorithm. The experimental results show that the solution efficiency of the method proposed in this paper is better than the traditional heuristic method on the scale of 300/500/750/1,000/1,500/2,000 task nodes, and the solution quality is similar to the result of the heuristic method. We hope that our ideas and methods for solving the large-scale cooperative task assignment problem can be used as a reference for large-scale task assignment problems and other related problems in other fields.

8.
Math Biosci Eng ; 18(2): 1051-1062, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33757175

ABSTRACT

BACKGROUND: To improve the understanding of the molecular mechanism of vitiligo is necessary to predict and formulate new targeted gene therapy strategies. METHODS: GSE65127, GSE75819, GSE53146 and GSE90880 were collected, and obtained four groups of differentially expressed genes (DEGs) by limma R package. Through weighted gene co-expression network analysis (WGCNA), the co-expression of genes with large variance in GSE65127 and GSE75819 was identified. Enrichment analysis of intersection gene between module genes and DEGs with the same up-regulated or down-regulated in GSE65127 and GSE75819 was performed. In addition, ssGSEA was used to identify the immune infiltration of vitiligo in four datasets. RESULTS: A total of 3083 DEGs and 16 modules were identified from GSE65127, and 5014 DEGs and 6 modules were screened from GSE75819. Finally, 77 important DEGs were identified. Enrichment analysis showed that 77 DEGs were mainly involved in spliceosome etc. The results of GSVA showed that melanogenesis, Fc gamma R-mediated phagocytosis, leishmaniasis, Wnt pathway and glycolipid metabolism were important KEGG pathways. The genes involved in these pathways were identified as key genes (MARCKSL1, MC1R, PNPLA2 and PRICKLE2). The AUC values of MC1R were the highest. Furthermore, different immune cells had different infiltration in vitiligo. There was a high correlation between immune cells and key genes. CONCLUSIONS: MC1R was found as a key gene in vitiligo and involved in the melanogenesis. The immune cells were different infiltration in vitiligo. These results suggested that key genes may be used as markers of vitiligo, and were associated with immune cell, especially MC1R.


Subject(s)
Gene Expression Profiling , Vitiligo , Humans , Vitiligo/genetics
9.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670294

ABSTRACT

Verticillium wilt is threatening the world's cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.


Subject(s)
Ascomycota/growth & development , Disease Resistance , Gene Expression Regulation, Plant , Gossypium , Plant Diseases , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Genome-Wide Association Study , Gossypium/genetics , Gossypium/metabolism , Gossypium/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology
10.
Cell Rep ; 34(2): 108609, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33440149

ABSTRACT

Stiffness in the tissue microenvironment changes in most diseases and immunological conditions, but its direct influence on the immune system is poorly understood. Here, we show that static tension impacts immune cell function, maturation, and metabolism. Bone-marrow-derived and/or splenic dendritic cells (DCs) grown in vitro at physiological resting stiffness have reduced proliferation, activation, and cytokine production compared with cells grown under higher stiffness, mimicking fibro-inflammatory disease. Consistently, DCs grown under higher stiffness show increased activation and flux of major glucose metabolic pathways. In DC models of autoimmune diabetes and tumor immunotherapy, tension primes DCs to elicit an adaptive immune response. Mechanistic workup identifies the Hippo-signaling molecule, TAZ, as well as Ca2+-related ion channels, including potentially PIEZO1, as important effectors impacting DC metabolism and function under tension. Tension also directs the phenotypes of monocyte-derived DCs in humans. Thus, mechanical stiffness is a critical environmental cue of DCs and innate immunity.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate/immunology , Immunotherapy/methods , Vascular Stiffness/immunology , Humans , Signal Transduction
11.
Matrix Biol ; 96: 69-86, 2021 02.
Article in English | MEDLINE | ID: mdl-33290836

ABSTRACT

A coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo. These effects were observed only when 4MU was added prior to initial antigen presentation but not later, consistent with 4MU-mediated inhibition of de novo antigenic responses. Building on these findings, we find that 4MU delays rejection of allogeneic pancreatic islet transplant and allogeneic cardiac transplants in mice and suppresses allogeneic T-cell activation in human mixed lymphocyte reactions. We conclude that 4MU, an approved drug, may have benefit as an adjunctive agent to delay transplantation rejection.


Subject(s)
Dendritic Cells/cytology , Graft Rejection/prevention & control , Hyaluronic Acid/biosynthesis , Hymecromone/administration & dosage , T-Lymphocytes, Regulatory/cytology , Animals , Antigen Presentation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Disease Models, Animal , Graft Rejection/immunology , Heart Transplantation/adverse effects , Humans , Hymecromone/pharmacology , Leukocytes/cytology , Leukocytes/drug effects , Leukocytes/immunology , Mice , Pancreas Transplantation/adverse effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous
12.
Front Immunol ; 11: 1982, 2020.
Article in English | MEDLINE | ID: mdl-32973804

ABSTRACT

Dendritic cells (DCs) are powerful antigen presenting cells, derived from bone marrow progenitors (cDCs) and monocytes (moDCs), that can shape the immune response by priming either proinflammatory or tolerogenic immune effector cells. The cellular mechanisms responsible for the generation of DCs that will prime a proinflammatory or tolerogenic response are poorly understood. Here we describe a novel mechanism by which tolerogenic DCs are formed from monocytes. When human monocytes were cultured with CD4+FoxP3+ natural regulatory T cells (Tregs) and T helper cells (Th) from healthy donor blood, they differentiated into regulatory DCs (DC Reg ), capable of generating induced Tregs from naïve T cells. DC Reg exhibited morphology, surface phenotype, cytokine secretion, and transcriptome that were distinct from other moDCs including those derived from monocytes cultured with Th or with GM-CSF/IL-4, as well as macrophages (MΦ). Direct cell contact between monocytes, Tregs and Th, along with Treg-derived CTLA-4, IL-10 and TGF-ß, was required for the phenotypic differentiation of DC Reg , although only IL-10 was required for imprinting the Treg-inducing capacity of DC Reg . High ratios of Treg:Th, along with monocytes and DC Reg similar in function and phenotype to those induced in vitro, were present in situ in human colorectal cancer specimens. Thus, through the combined actions of Tregs and Th, monocytes differentiate into DCs with regulatory properties, forming a positive feedback loop to reinforce Treg initiated immune regulation. This mechanism may contribute to immune tolerance in tissues such as tumors, which contain an abundance of Tregs, Th and monocytes.


Subject(s)
Cell Communication , Dendritic Cells/immunology , Dendritic Cells/metabolism , Monocytes/immunology , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Biomarkers , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Communication/immunology , Cell Differentiation , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Computational Biology/methods , Gene Expression Profiling , Humans , Immunomodulation , Immunophenotyping , Monocytes/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome
13.
ISA Trans ; 94: 135-143, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30929808

ABSTRACT

To remove more complex or unknown noise, we propose a new dictionary learning model by assuming noise as Mixture of Gaussian (MoG) distributions. Since MoG is able to approximate any continuous distributions universally, the proposed method can effectively recover the original image from the corrupted one with various forms of noise. Meanwhile, to solve weighted ℓ2-ℓ0 minimization problems, we further propose modified orthogonal matching pursuit method in sparse coding and extend alternating proximal algorithm to update dictionaries. Experimental results demonstrate that our proposed method is superior to several previous denoising methods in terms of quantitative measures and visual quality.

14.
Opt Lett ; 43(18): 4534-4537, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211909

ABSTRACT

We propose a polarization demosaicing convolutional neural network to address the image demosaicing issue, the last unsolved issue in microgrid polarimeters. This network learns an end-to-end mapping between the mosaic images and full-resolution ones. Skip connections and customized loss function are used to boost the performance. Experimental results show that our proposed network outperforms other state-of-the-art methods by a large margin in terms of quantitative measures and visual quality.

15.
Opt Lett ; 43(14): 3265-3268, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30004482

ABSTRACT

To address the key image interpolation issue in microgrid polarimeters, we propose a machine learning model based on sparse representation. The sparsity and non-local self-similarity priors are used as regularization terms to enhance the stability of an interpolation model. Moreover, to make the best of the correlation among different polarization orientations, patches of different polarization channels are joined to learn adaptive sub-dictionary. Synthetic and real images are used to evaluate the interpolated performance. The experimental results demonstrate that our proposed method achieves state-of-the-art results in terms of quantitative measures and visual quality.

16.
Proc Natl Acad Sci U S A ; 114(8): 1988-1993, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167780

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are known mainly for their secretion of type I IFN upon viral encounter. We describe a CD2hiCD5+CD81+ pDC subset, distinguished by prominent dendrites and a mature phenotype, in human blood, bone marrow, and tonsil, which can be generated from CD34+ progenitors. These CD2hiCD5+CD81+ cells express classical pDC markers, as well as the toll-like receptors that enable conventional pDCs to respond to viral infection. However, their gene expression profile is distinct, and they produce little or no type I IFN upon stimulation with CpG oligonucleotides, likely due to their diminished expression of IFN regulatory factor 7. A similar population of CD5+CD81+ pDCs is present in mice and also does not produce type I IFN after CpG stimulation. In contrast to conventional CD5-CD81- pDCs, human CD5+CD81+ pDCs are potent stimulators of B-cell activation and antibody production and strong inducers of T-cell proliferation and Treg formation. These findings reveal the presence of a discrete pDC population that does not produce type I IFN and yet mediates important immune functions previously attributed to all pDCs.


Subject(s)
B-Lymphocytes/physiology , Cell Differentiation , Cell Proliferation/physiology , Dendritic Cells/physiology , Lymphocyte Activation , T-Lymphocytes/physiology , Animals , CD2 Antigens/metabolism , CD5 Antigens/metabolism , Cell Separation , Flow Cytometry , Humans , Interferon Type I/metabolism , Male , Mice , Mice, Inbred C57BL , Oligodeoxyribonucleotides/immunology , Tetraspanin 28/metabolism , Toll-Like Receptors/metabolism
17.
Blood ; 129(12): 1718-1728, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28096089

ABSTRACT

The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8+ DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+ DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+ DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+ DCs initiates tolerance induction. Tolerogenic CD8+ DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+ DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.


Subject(s)
Dendritic Cells/immunology , Graft Rejection/prevention & control , Immune Tolerance , Natural Killer T-Cells/immunology , Animals , Bone Marrow Transplantation , CD8-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Graft Rejection/immunology , Heart Transplantation , Mice
18.
JCI Insight ; 1(18): e89020, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27812544

ABSTRACT

BM-derived DC (BMDC) are powerful antigen-presenting cells. When loaded with immune complexes (IC), consisting of tumor antigens bound to antitumor antibody, BMDC induce powerful antitumor immunity in mice. However, attempts to employ this strategy clinically with either tumor-associated DC (TADC) or monocyte-derived DC (MoDC) have been disappointing. To investigate the basis for this phenomenon, we compared the response of BMDC, TADC, and MoDC to tumor IgG-IC. Our findings revealed, in both mice and humans, that upon exposure to IgG-IC, BMDC internalized the IC, increased costimulatory molecule expression, and stimulated autologous T cells. In contrast, TADC and, surprisingly, MoDC remained inert upon contact with IC due to dysfunctional signaling following engagement of Fcγ receptors. Such dysfunction is associated with elevated levels of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) and phosphatases regulating Akt activation. Indeed, concomitant inhibition of both SHP-1 and phosphatases that regulate Akt activation conferred upon TADC and MoDC the capacity to take up and process IC and induce antitumor immunity in vivo. This work identifies the molecular checkpoints that govern activation of MoDC and TADC and their capacity to elicit T cell immunity.


Subject(s)
Antigen-Antibody Complex/immunology , Antigens, Neoplasm/immunology , Dendritic Cells/immunology , Lung Neoplasms/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Differentiation , Cell Line, Tumor , Humans , Lymphocyte Activation , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , Neoplasm Recurrence, Local , Neoplasms, Experimental/immunology , T-Lymphocytes/immunology , Tumor Microenvironment
19.
Blood ; 119(17): 3975-86, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22403256

ABSTRACT

Beyond providing a scaffold for immune cells, recent studies indicate that lymph node stromal cells provide potent regulatory capacities that affect the quality of adaptive immune responses. In this study, we provide evidence that neonatal lymph node stromal cells (nnLNSCs) consistently promote the differentiation of macrophage dendritic cell progenitors as well as mature and immature dendritic cells into a distinct population of CX3CR1(+) CD11b(+)F4/80(+) regulatory macrophages (regMΦ). These cells possess remarkably low levels of T cell costimulatory molecules as well as MHC class II molecules. regMΦ do not interfere with early T-cell activation but, via nitric oxide secretion, efficiently suppress T-cell proliferation. Furthermore, CD4(+) T cells proliferating in the presence of regMΦ gain immunosuppressive capacity and MΦ isolated from day 3 nnLNs are T-cell immunosuppressive. Adoptive transfer of antigen-loaded regMΦ induce a profound antigen-specific immune suppression in vivo. Together our data show that nnLNSCs skew the differentiation of dendritic cells and their progenitors toward regMΦ, thus revealing a novel mechanism for local immune regulation.


Subject(s)
B7-1 Antigen/metabolism , CD11b Antigen/metabolism , Cell Lineage , Dendritic Cells/immunology , Lymph Nodes/immunology , Macrophages/immunology , Myeloid Cells/immunology , Receptors, Chemokine/metabolism , Stromal Cells/immunology , Animals , Animals, Newborn , CX3C Chemokine Receptor 1 , Cell Proliferation , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Histocompatibility Antigens Class II/immunology , Lymph Nodes/cytology , Lymph Nodes/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology , Myeloid Cells/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phenotype , Stromal Cells/cytology , Stromal Cells/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
Immunogenetics ; 57(12): 934-43, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16372191

ABSTRACT

Interleukin 23 (IL-23) is a new member of the IL-12 family that plays a critical role in promoting the proliferation of memory T helper 1 cells. The heterodimerized IL-23 receptor is composed of a shared IL-12 receptor beta 1 (IL-12Rbeta1) and an IL-12Rbeta2-related molecule called IL-23R. The standard form of IL-23R is encoded by at least 12 exons. Here, we demonstrate that at least six spliced isoforms of IL-23R (IL-23R1 to 6) can be generated through alternative splicing. The splicing strategies for the IL-23R gene are complicated and most often result in the deletion of exon 7 and/or exon 10. Translation prediction revealed that these spliced variants result in either premature termination to give rise to a diverse form of receptor ectodomain, or a frameshift to generate various lengths of the IL-23R endodomain. Differential expressions of IL-23R spliced variants are observed in natural killer and CD3+ CD4+ T cells. The expressions of these spliced variants are also prevalently and complicatedly regulated in tumor cell lines. Interestingly, only IL-23R2 and/or IL-23R4 variants are predominantly detected in certain human lung carcinomas, but not in their resected normal margin tissues. Thus, our results indicate that the regulation of alternative splicing on the IL-23R gene is complicated, and the preferential expression of certain IL-23R spliced variants may be a contributive factor to the pathogenesis of certain cancers.


Subject(s)
Interleukins/metabolism , Lymphocytes/immunology , Neoplasms/genetics , Neoplasms/immunology , Receptors, Interleukin/genetics , Alternative Splicing , Amino Acid Sequence , Cell Line, Tumor , Computational Biology , Gene Expression , Humans , Interleukin-23 , Interleukin-23 Subunit p19 , Killer Cells, Natural/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Molecular Sequence Data , Protein Isoforms/genetics , Sequence Homology, Amino Acid , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...