Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 586
Filter
1.
J Coll Physicians Surg Pak ; 34(6): 672-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840349

ABSTRACT

OBJECTIVE: To explore the preventive efficacy of antibiotics following surgical removal of the impacted mandibular third molars and screen the potential risk factors. STUDY DESIGN: A cohort trial. Place and Duration of the Study: Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine, Stomatology Hospital, Hangzhou, China, from August 2021 to 2022. METHODOLOGY: Cases with impacted mandibular third molar were divided into two groups based on antibiotics use. The primary outcome variable post-operative infection, secondary clinical parameter analgesics intake, and other variables (the operative time, the history of pericoronitis, and wound closure) were documented. RESULTS: The post-operative infections occurred in 3.64% (n = 12) of the 330 cases (n = 330); 3.01% in the antibiotic group (n = 166) and 4.27% in the control group (n = 164, OR = 1.44, 95% CI: 0.49 to 4.06; p = 0.54). Concerning secondary outcome measures, the analgesics that the antibiotic group took was 5.40, and the control group took was 5.95 (95% CI = -0.21 to 1.30; p = 0.16). For those with post-operative infections, the average operative time was 22.83 minutes, whereas for those without post-operative infections it was 14.87 minutes (95% CI = -0.26 to 15.67; p = 0.04). When the operative time was greater than or equal to 15 minutes, it was related to more analgesics use (95% CI: -0.43 to 1.93; p <0.05), also was the history of pericoronitis (95% CI = 0.04 to 1.54; p = 0.04). CONCLUSION: Antibiotics are unnecessary for preventing post-operative infections or minimising analgesic requirements following extraction of the impacted mandibular third molars; operative time and pericoronitis showed a suppressive influence on post-operative recovery. KEY WORDS: Impacted molars, Antibiotics, Analgesics, Operative time, Pericoronitis.


Subject(s)
Anti-Bacterial Agents , Antibiotic Prophylaxis , Molar, Third , Surgical Wound Infection , Tooth Extraction , Tooth, Impacted , Humans , Molar, Third/surgery , Male , Tooth, Impacted/surgery , Female , Tooth Extraction/adverse effects , Adult , Surgical Wound Infection/prevention & control , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/methods , Mandible/surgery , Young Adult , China/epidemiology , Operative Time , Cohort Studies , Treatment Outcome
2.
BMC Genomics ; 25(1): 543, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822270

ABSTRACT

Recent studies on co-transformation of the growth regulator, TaGRF4-GIF1 chimera (Growth Regulating Factor 4-GRF Interacting Factor 1), in cultivated wheat varieties (Triticum aestivum), showed improved regeneration efficiency, marking a significant breakthrough. Here, a simple and reproducible protocol using the GRF4-GIF1 chimera was established and tested in the medicinal orchid Dendrobium catenatum, a monocot orchid species. TaGRF4-GIF1 from T. aestivum and DcGRF4-GIF1 from D. catenatum were reconstructed, with the chimeras significantly enhancing the regeneration efficiency of D. catenatum through in planta transformation. Further, mutating the microRNA396 (miR396) target sites in TaGRF4 and DcGRF4 improved regeneration efficiency. The target mimicry version of miR396 (MIM396) not only boosted shoot regeneration but also enhanced plant growth. Our methods revealed a powerful tool for the enhanced regeneration and genetic transformation of D. catenatum.


Subject(s)
Dendrobium , MicroRNAs , Plant Shoots , Regeneration , Dendrobium/genetics , Dendrobium/growth & development , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Regeneration/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
3.
Nat Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740994

ABSTRACT

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .

4.
Int J Surg ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759693

ABSTRACT

BACKGROUND: There was no consistent evidence whether perioperative blood transfusion (PBT) affects the long-term survival of gastric cancer (GC) patients after undergoing gastrectomy. This study aimed to investigate the effects of PBT on long-term survival of GC patients, as well as to determine the threshold of PBT and provide evidence for future surgical practice. METHODS: We performed this real-world study of GC patients undergoing gastrectomy in China National Cancer Center from January 1, 2000 to December 30, 2019. Overall survival (OS) curves were plotted using the Kaplan-Meier method and compared statistically using the log-rank test. Univariate and multivariate Cox proportional hazards models were used to determine the risk factors for OS. RESULTS: In total, 13470 GC patients undergoing gastrectomy from 2000 to 2019 was included, of whom 3465 (34.6%) GC patients received PBT. PBT ratios declined from 29.1% (114/392) in 2000 to 11.2% in 2019 (149/1178), with the highest blood transfusion ratio in 2005 at 43.7% (220/504). For patients transfused with red blood cells, the median value of hemoglobin (Hb) before transfusion in the PBT group decreased from 110 g/L in 2000 to 87 g/L in 2019. Compared with patients who not receiving perioperative blood transfusion (NPBT), PBT group are more likely to be older (≥65, 39.1% vs. 30.1%, P<0.001), open operation (89.7% vs. 78.1%, P<0.001), higher ASA score (>2, 25.3% vs. 14.9%, P<0.001) and in the later pTNM stage (pTNM stage III, 68.5% vs. 51.5%, P<0.001). Results of multivariable Cox regression analysis showed that PBT was an independent prognostic factor for worse OS in GC patients undergoing gastrectomy (HR=1.106, 95% CI, 1.01-1.211, P=0.03). After stratified according to tumor stage, we found that PBT group had a worse prognosis only in pTNM stage III (HR=1.197, 95% CI, 1.119-1.281, P<0.001). OS was obviously poor in the PBT group when Hb levels were higher than 90 g/L (90 g/L120 g/L:HR= 1.207, 95% CI, 1.098-1.327, P<0.001), while there was no difference between the two groups when Hb levels were lower than or equal to 90 g/L (Hb≤90 g/L: HR=1.162, 95% CI, 0.985-1.370, P=0.075). CONCLUSION: In conclusion, PBT was an independent prognostic factor for worse OS. Blood transfusion might not be recommended for gastric cancer patients with perioperative minimum Hb values higher than 90 g/L.

5.
Article in English | MEDLINE | ID: mdl-38814831

ABSTRACT

AIMS: Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffered ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. RESULTS: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species while decreases in the activities of anti-oxidative enzymes, concomitant with a down-regulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1, and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), and subsequently disrupted the assembly of CARD11, B-cell lymphoma 10 (BCL10) and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. INNOVATION AND CONCLUSION: The E3 ubiquitin ligase function of MALT1 accounts for the down-regulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and subsequent activation of MALT1.

6.
Dalton Trans ; 53(20): 8843-8849, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38716691

ABSTRACT

Heteroatomic anion doping represents a powerful approach for manipulating the electronic configuration of the active metal locus in electrocatalysts, resulting in enhanced multifunctional electrocatalytic properties in hydrogen/oxygen evolution reactions (HER/OER). Here, fluorine-tailored Ni2P-F3 nanosheets were synthesized and evaluated as a robust multifunctional electrocatalyst for HER, OER, and UOR. Our comprehensive experimental and theoretical investigations reveal that the anionic F effectively tailored the electronic states of the Ni2P-F3 nanosheets, resulting in an elevated d-band center and optimizing the sorption capacity of intermediates. In addition to thermodynamically and kinetically favoured redox reactions, F doping facilitates the reconstruction and generation of active γ-NiOOH. Resulting from the optimized electronic configuration and nanosheet architecture, outstanding catalytic activities are demonstrated by Ni2P-F3 with low overpotentials to reach 100 mA cm-2 for HER (177 mV) and OER (293 mV), surpassing Ni2P by 234 and 205 mV, respectively. Notably, 1.618 V is required for full-water-diversion to reach 10 mA cm-2, while 1.414 V is required with urea oxidation for 100 mA cm-2.

7.
World J Gastrointest Surg ; 16(5): 1291-1300, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817277

ABSTRACT

BACKGROUND: The prognostic nutritional index (PNI), a marker of immune-nutrition balance, has predictive value for the survival and prognosis of patients with various cancers. AIM: To explore the clinical significance of the preoperative PNI on the prognosis of ampullary adenocarcinoma (AC) patients who underwent curative pancreaticoduodenectomy. METHODS: The data concerning 233 patients diagnosed with ACs were extracted and analyzed at our institution from January 1998 to December 2020. All patients were categorized into low and high PNI groups based on the cutoff value determined by receiver operating characteristic curve analysis. We compared disease-free survival (DFS) and overall survival (OS) between these groups and assessed prognostic factors through univariate and multivariate analyses. RESULTS: The optimal cutoff value for the PNI was established at 45.3. Patients with a PNI ≥ 45.3 were categorized into the PNI-high group, while those with a PNI < 45.3 were assigned to the PNI-low group. Patients within the PNI-low group tended to be of advanced age and exhibited higher levels of aspartate transaminase and total bilirubin and a lower creatinine level than were those in the PNI-high group. The 5-year OS rates for patients with a PNI ≥ 45.3 and a PNI < 45.3 were 61.8% and 43.4%, respectively, while the 5-year DFS rates were 53.5% and 38.3%, respectively. Patients in the PNI- low group had shorter OS (P = 0.006) and DFS (P = 0.012). In addition, multivariate analysis revealed that the PNI, pathological T stage and pathological N stage were found to be independent prognostic factors for both OS and DFS. CONCLUSION: The PNI is a straightforward and valuable marker for predicting long-term survival after pancreatoduodenectomy. The PNI should be incorporated into the standard assessment of patients with AC.

8.
Acta Pharm Sin B ; 14(5): 2097-2118, 2024 May.
Article in English | MEDLINE | ID: mdl-38799640

ABSTRACT

Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.

9.
Front Cell Neurosci ; 18: 1364164, 2024.
Article in English | MEDLINE | ID: mdl-38711616

ABSTRACT

Introduction: Fused in sarcoma (FUS) mutations represent the most common genetic etiology of juvenile amyotrophic lateral sclerosis (JALS), for which effective treatments are lacking. In a prior report, we identified a novel FUS mutation, c.1509dupA: p. R503fs (FUSR503fs), in a sporadic JALS patient. Methods: The physicochemical properties and structure of FUSR503fs protein were analyzed by software: Multi-electrode array (MEA) assay, calcium activity imaging assay and transcriptome analysis were used to explore the pathophysiological mechanism of iPSC derived motor neurons. Results: Structural analysis and predictions regarding physical and chemical properties of this mutation suggest that the reduction of phosphorylation and glycosylation sites, along with alterations in the amino acid sequence, may contribute to abnormal FUS accumulation within the cytoplasm and nucleus of induced pluripotent stem cell- derived motor neurons (MNs). Multi-electrode array and calcium activity imaging indicate diminished spontaneous electrical and calcium activity signals in MNs harboring the FUSR503fs mutation. Transcriptomic analysis reveals upregulation of genes associated with viral infection and downregulation of genes involved in neural function maintenance, such as the ATP6V1C2 gene. Treatment with ropinirole marginally mitigates the electrophysiological decline in FUSR503fs MNs, suggesting the utility of this cell model for mechanistic exploration and drug screening. Discussion: iPSCs-derived motor neurons from JALS patients are promising tools for drug screening. The pathological changes in motor neurons of FUSR503fs may occur earlier than in other known mutation types that have been reported.

10.
ACS Omega ; 9(13): 14849-14859, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585068

ABSTRACT

In this work, a molecular-level kinetic model of ethane/propane steam cracking was developed by using a hybrid structural unit-bond electron matrix framework. The molecular-level simulation was conducted, creating a detailed feedstock composition, formulating the reaction rules, and automating the generation and visualization of reaction networks. Ordinary differential equations were automatically generated based on the Arrhenius equation, while the kinetic parameters were reduced via linear free energy relations (LFERs). Furthermore, proper mathematical models for mass transfer, heat transfer, and momentum transfer within the cracking furnace were integrated into the molecular-level kinetic model, enabling the simultaneous calculation of the transfer process and chemical kinetics in steam cracking. The model was validated by its precise prediction of product yields, outlet pressure, and outlet temperature, which were collected from an industrial gas-cracking furnace.

11.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124205, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38569389

ABSTRACT

Heterogeneous reactions on mineral dust surfaces are increasingly considered important in the removal of gaseous pollutants and the formation of secondary aerosols. Although the heterogeneous reaction of NO2 on the hematite surface has been investigated in many previous studies, little is known about the reaction of NO2 with hematite under ambient conditions. In this work, heterogeneous reactions of NO2 with hematite at 298 K were investigated via a coated-wall flow tube reactor and in situ diffuse reflectance Fourier transformed infrared spectroscopy (DRIFTS). The influence of UV illumination, relative humidity (RH) and O2 on the uptake coefficients and adsorption amount of NO2, as well as the nitrate formation on the hematite surface, has been analyzed comprehensively. UV irradiation shows a significant effect on the true uptake coefficient (γBET), which increases from 2.00 × 10-6 to 4.76 × 10-6 in the N2 stream and 1.32 × 10-6 to 4.07 × 10-6 in the air stream under dry conditions (∼0.3 % RH). RH (in the range of 0-67 %) exhibits an inhibitory effect on the adsorption of NO2 on the hematite surface because of the competition between NO2 and water molecules, that is, γBET and adsorption amount of NO2 decrease with an increase in RH under both the dark and light reaction conditions. Meanwhile, both the γBET and adsorption amount of NO2 on hematite decrease in the air stream compared to those in N2 conditions. In addition, the results from the DRIFTS experiments indicate that the presence of UV irradiation promotes the conversion of NO2 to nitrate and both the RH and O2 suppress the nitrate formation. From this research, the heterogeneous reactions between NO2 with mineral dust under ambient conditions will be better understood.

13.
Theriogenology ; 222: 66-79, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38626583

ABSTRACT

In vitro maturation (IVM) and cryopreservation of goat oocytes are important for establishing a valuable genetic bank for domesticated female animals and improving livestock reproductive efficiency. C-Phycocyanin (PC) is a Spirulina extract with antioxidant, antiinflammatory, and radical scavenging properties. However, whether PC has positive effect on goat oocytes IVM or developmental competence after vitrification is still unknown. In this study, we found that first polar body extrusion (n = 293), cumulus expansion index (n = 269), and parthenogenetic blastocyst formation (n = 281) were facilitated by adding 30 µg/mL PC to the oocyte maturation medium when compared with the control groups and that supplemented with 3, 10, 100 or 300 µg/mL PC (P < 0.05). Although PC supplementation did not affect spindle formation or chromosome alignment (n = 115), it facilitated or improved cortical granules migration (n = 46, P < 0.05), mitochondria distribution (n = 39, P < 0.05), and mitochondrial membrane potential (n = 46, P < 10-4). Meanwhile, supplementation with 30 µg/mL PC in the maturation medium could significantly inhibit the reactive oxygen species accumulation (n = 65, P < 10-4), and cell apoptosis (n = 42, P < 0.05). In addition, PC increased the oocyte mRNA levels of GPX4 (P < 0.01), and decreased the mRNA and protein levels of BAX (P < 0.01). Next, we investigated the effect of PC supplementation in the vitrification solution on oocyte cryopreservation. When compared with the those equilibrate in the vitrification solution without PC, recovered oocytes in the 30 µg/mL PC group showed higher ratios of normal morphology (n = 85, P < 0.05), survival (n = 85, P < 0.05), first polar body extrusion (n = 62, P < 0.05), and parthenogenetic blastocyst formation (n = 107, P < 0.05). Meanwhile, PC supplementation of the vitrification solution increased oocyte mitochondrial membrane potential (n = 53, P < 0.05), decreased the reactive oxygen species accumulation (n = 73, P < 0.05), promoted mitochondria distribution (n = 58, P < 0.05), and inhibited apoptosis (n = 46, P < 10-3). Collectively, our findings suggest that PC improves goat oocyte IVM and vitrification by reducing oxidative stress and early apoptosis, which providing a novel strategy for livestock gamete preservation and utilization.


Subject(s)
Cryopreservation , Goats , In Vitro Oocyte Maturation Techniques , Oocytes , Phycocyanin , Vitrification , Animals , Oocytes/drug effects , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Vitrification/drug effects , Cryopreservation/veterinary , Cryopreservation/methods , Phycocyanin/pharmacology , Female , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
14.
Trials ; 25(1): 275, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650028

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive, neurodegenerative illness marked by the loss of dopaminergic neurons, causing motor symptoms. Oral levodopa replacement therapy remains the gold standard in the treatment of PD. It is, nevertheless, a symptomatic treatment. There is currently no effective treatment for PD. Therefore, new therapies for PD are highly desirable. Low-intensity pulsed ultrasound (LIPUS) has been shown to improve behavioral functions in PD animal models. It is a new type of neuromodulation approach that combines noninvasiveness with high spatial precision. The purpose of this study is to establish a new clinical protocol for LIPUS in the treatment of movement disorders in patients with PD. METHODS: This protocol is a single-site, prospective, double-blind, randomized controlled trial (RCT). Forty-eight participants with clinically confirmed PD will be randomly allocated to one of two groups: LIPUS group or sham group. All of the participants continue to use pharmacological therapy as a fundamental treatment. The primary outcome is the difference between groups from baseline to 4 months in the change in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score (part III). The secondary outcomes include the rating scales such as the Mini-Mental State Examination (MMSE), and other three rating scales, and medical examinations including high-density electroencephalography (hdEEG) and functional magnetic resonance imaging (fMRI). The primary safety outcome will be assessed at 4 months, and adverse events will be recorded. DISCUSSION: This study represents the clinical investigation into the efficacy of therapeutic LIPUS in the treatment of PD for the first time. If LIPUS is determined to be effective, it could offer a practical and innovative means of expanding the accessibility of ultrasound therapy by using a wearable LIPUS device within a home setting. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100052093. Registered on 17 October 2021.


Subject(s)
Parkinson Disease , Randomized Controlled Trials as Topic , Ultrasonic Therapy , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Double-Blind Method , Prospective Studies , Treatment Outcome , Ultrasonic Therapy/methods , Male , Wearable Electronic Devices , Aged , Middle Aged , Female , Time Factors , China
15.
Nanomaterials (Basel) ; 14(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38607144

ABSTRACT

Psoriasis, a chronic inflammatory skin disease induced by various factors, including genetic factors, immune factors, environmental factors, and psychological factors, is characterized by thickening of the epidermis, excessive proliferation of keratinocytes, abnormal differentiation, and an excessive inflammatory response. Traditional treatments for psoriasis still face challenges because of limited curative effects, notable side effects, and a tendency for recurrence. In contrast, topical therapy provides a favorable option for psoriasis treatment because of its noninvasive and self-administered method. In this study, gentiopicrin (Gen) is encapsulated in the liposomes to form a nanodrug, and then chitosan is covered on the nanodrug to assemble the nanodrug delivery system (CS@Gen), which is used as a topical agent for treating psoriasis. Then M5 (a mixture of five pro-inflammatory cytokines, i.e., IL-17A, IL-22, IL-1α, oncostatin M, and TNF-α)-induced HacaT cells and imiquimod-induced psoriasis mouse models are established, whose results show that CS@Gen induces apoptosis and inhibits the proliferation and cell migration of psoriasis keratinocytes. Additionally, the application of CS@Gen cream can significantly reduce epidermal thickness, diminish skin scaling, and improve other related mechanisms in mice affected by psoriasis. Meanwhile, the prepared CS@Gen can significantly reduce the expression levels of IL-17a, Cxcl2, S100a, Mki67, and other related inflammatory factors, resulting in indirectly inhibiting the inflammation of keratinocytes. In summary, the present study provides an ideal loading for an anti-inflammatory and immunomodulatory drug delivery system for the treatment of psoriasis.

16.
Molecules ; 29(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611941

ABSTRACT

In this study, a novel green fluorescent probe material, nitrogen-doped carbon quantum dots (N-CQDs), was prepared by a one-step hydrothermal synthesis method using walnut green skin as a carbon source and acetamide-glycolic acid deep eutectic solvent (AGADES) as a modifier. By covalent coupling, the amide chromophore in AGADES is designed to cover the surface of walnut green skin carbon quantum dots (W-CQDs), forming a fluorescence energy resonance effect and improving the fluorescence performance of the carbon quantum dots. The prepared N-CQDs have a uniform particle size distribution, and the fluorescence quantum efficiency has increased from 12.5% to 32.5%. Within the concentration range of 0.01~1000 µmol/L of Pb2+, the linear detection limit is 1.55 nmol/L, which can meet the trace detection of Pb2+ in the water environment, and the recycling rate reaches 97%. This method has been successfully applied to the fluorescence detection and reuse of Pb2+ in actual water bodies, providing new ideas and methods for the detection of heavy metal ions in environmental water.

17.
Plant Dis ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549271

ABSTRACT

Cowpea or black-eyed pea [Vigna unguiculata (L.) Walp.] is a dual-purpose leguminous crop grown for food and fodder. In September 2022, cowpea plants exhibiting symptoms of a leaf spot and blight were observed in Renda Town located in Jingning County of Gansu Province, China, with the disease incidence in individual cowpea fields as high as 100%. Diseased leaves showed variable-sized, nearly circular brown blotches, large blotches with dark brown margins, and the adaxial surfaces of blotches had small black dots and whorls (Fig. 1). Multiple isolates with consistent colony characteristics were obtained from cowpea leaves with typical symptoms. The isolates were transferred to fresh potato dextrose agar medium (PDA) and then purified by transferring hyphal tips to PDA. Three isolates, JNJD-1, JNJD-2, and JNJD-3, were selected for subsequent identification and pathogenicity determination. After eight days at 25℃ on PDA, the colonies appeared irregular, aerial mycelium dense, cottony, atrovirens to olive brown, with white hyphae on the undulate margin (Fig. 2A and B). The pycnidia were globose to sub-globose, brown to dark brown, with 70-110 µm diameters. Single celled hyaline conidia were ellipsoidal to oblong with obtuse ends, and measured 6.6-9.3 × 2.8-4.1 µm (x̄ = 7.8 × 3.5 µm, n = 50) (Fig. 2C). Morphological characteristics are similar to the description of the genus Boeremia (Aveskamp et al, 2010). Primer pairs ITS1/ITS4, LR0R/LR5, fRPB2-5F2/fRPB2-7cR, and TUB2FD/TUB4RD were used to amplify portions of the ITS, LSU, RPB2, and TUB genes, respectively (Chen et al, 2015). The obtained sequences (Accession numbers: PP033662 to PP033664 for ITS, PP033667 to PP033669 for LSU, PP035531 to PP035533 for RPB2, and PP035534 to PP035536 for TUB) were 97% identical to that of a B. exigua strain CBS 431.74 (accession no. FJ427001, EU754183, GU371780, and FJ427112) (Table 1). The constructed maximum likelihood tree indicated close relationships between three isolates and B. exigua, which clustered together (Fig. 3). Cowpea plants (cultivar Junlintianxia) at the three-leaf stage were inoculated by spraying a spore suspension (1×106 conidia/ml) of JNJD-1, JNJD-2, and JNJD-3 until run off and incubated at greenhouse conditions (25°C and 12 h light). Inoculations with sterile water were used as a control and each treatment was repeated 3 times with five plants per replicate. Small brown spots appeared on the infected leaves at 2 dpi, followed by the appearance of large blotches, with dark brown at the margin and grayish-white in the center at 5 dpi (Fig. 4A). These lesions gradually increase and coalesce, causing leaf chlorosis and finally defoliation in serious cases. Disease incidence in inoculated cowpea plants treated with the isolates JNJD-1, JNJD-2, and JNJD-3 reached almost 100%. In contrast, control plants developed no symptoms (Fig. 4B). The pathogens were re-isolated from the inoculated leaves and identified as B. exigua using morphological and molecular analysis, whereas no fungus was isolated from control leaves. The experiment was repeated once under the same conditions, yielding similar results. B. exigua has a broad host range, infecting 19 families and 31 genera of plant species, and causing leaf spots, leaf blight, and tuber rot (Lan and Duan 2022). To our knowledge, this is the first report of the pathogen B. exigua causing spot blight on cowpeas. It has been reported that B. exigua infects leguminous crops from multiple genera, such as field pea, soybean, white clover, and Dumasia villosa (Liu et al, 2023). This study further enriches the host range of this pathogen and the pathogen species of cowpea leaf diseases.

18.
Biomed Pharmacother ; 174: 116474, 2024 May.
Article in English | MEDLINE | ID: mdl-38518604

ABSTRACT

Chemotherapy and targeted drugs-induced senescent ovarian cancer cells that accumulate in peritoneal adipose tissue contribute significantly to chronic inflammation, disrupt homeostasis, and may fuel various aspects of cancer progression. However, the pro-senescence effects of chemotherapy and targeted drugs on adipose derived stem cells (ADSCs) within peritoneal adipose tissue remain poorly understood. In this study, we show that the first-line chemotherapy and targeted drugs can induce the cellular senescence of ADSCs in vitro and increase the aging of peritoneal adipose tissue in vivo. These treatments significantly promoted the dysregulation of glucose and lipid metabolism, including insulin resistance and liver lipid accumulation. Our study shows that dasatinib and quercetin, as senolytics, effectively restore glucose homeostasis in mice with ovarian cancer and significantly reduce adipose tissue aging. Importantly, combining these drugs with Carboplatin or Olaparib results in a marked decrease in both peritoneal and adipose tissue metastasis of ovarian cancer cells. Mechanistically, we revealed that there is crosstalk between ovarian cancer cells and senescent ADSCs. The crosstalk increases inflammatory cytokines and chemokines production in ADSCs and notably upregulates chemokine receptors on cancer cells. Collectively, these data indicate that senescent ADSCs induced by chemotherapy and targeted therapy drugs impair adipose tissue function. However, the senolytic drugs dasatinib and quercetin, can significantly ameliorate organ aging and damage induced by these treatments. Notably, dasatinib and quercetin combined with Carboplatin or Olaparib reduced the peritoneal and adipose tissue metastasis of ovarian cancer, ultimately benefiting the mice undergoing chemotherapy and targeted therapy.


Subject(s)
Adipose Tissue , Carboplatin , Cellular Senescence , Dasatinib , Ovarian Neoplasms , Peritoneal Neoplasms , Phthalazines , Piperazines , Quercetin , Dasatinib/pharmacology , Dasatinib/administration & dosage , Female , Animals , Quercetin/pharmacology , Quercetin/administration & dosage , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Phthalazines/pharmacology , Phthalazines/administration & dosage , Carboplatin/pharmacology , Carboplatin/administration & dosage , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Piperazines/pharmacology , Piperazines/administration & dosage , Cellular Senescence/drug effects , Mice , Humans , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/pathology , Senotherapeutics/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Mice, Inbred C57BL
19.
ACS Appl Mater Interfaces ; 16(10): 12637-12646, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38441047

ABSTRACT

Sulfhydryl-based polyimides were synthesized by the nucleophilic ring-opening reaction of thiolactone monomers (BPDA-T, ODPA-T, BTDA-T) with polyethylenimine (PEI), and they were coated on carbon nanotubes as host materials (BPTP@CNT, ODTP@CNT, and BTTP@CNT) of the sulfur cathode. BPTP@CNT/S, ODTP@CNT/S, and BTTP@CNT/S as cathode materials not only promote the covalent bonding of sulfur and polysulfide with sulfhydryl-based polyimides but also reduce the shuttle effect of soluble polysulfide in the redox process. Moreover, sulfhydryl-based polyimides can help improve the compatibility and interfacial contact between sulfur and conductive carbon while alleviating the volume expansion of the cathode. In addition, the conductive network of carbon nanotubes improves the electronic conductivity of the cathode materials. The BTTP@CNT/S cathode showed superior stability (the initial capacity was 902 mAh g-1 at 1C, and the capacity retention rate was 88.58% after 500 cycles) and the initial capacity could reach 718 mAh g-1 when the sulfur loading was 4.8 mg cm-2 (electrolyte/sulfur ratio: 10 µL mg-1), which fully proves the feasibility of the large-scale application of sulfhydryl-based polyimide materials.

20.
J Drug Target ; 32(4): 381-392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321981

ABSTRACT

Rheumatoid arthritis is a chronic and complex autoimmune disease that is marked by an inflammatory response, synovial hyperplasia, vascularisation, fascial formation, cartilage and bone destruction, which can lead to joint deformity and even loss of function, ultimately affecting a person's health and quality of life. Although the pathogenesis of RA is unclear, growing evidence suggests that inflammation-associated cells infiltrate joints, causing tissue damage, inflammation and pain. This disruption in the balance between host tolerance and immune homeostasis the progression of RA. Existing drug therapy and surgical treatments for RA are unable to completely cure the disease or reverse its accelerated progression. Therefore, the design and development of an appropriate and effective drug delivery system will substantially improve the therapeutic effect. In this review, by describing the inflammatory microenvironment of rheumatoid arthritis and the associated inflammatory cells, the progress of targeting strategies and applications of nanotechnology in the disease is summarised, which will be helpful in providing new ideas for the subsequent treatment of rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Nanomedicine , Humans , Quality of Life , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...