Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Biomed Pharmacother ; 176: 116863, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38850650

ABSTRACT

Pyroptosis is a lytic and pro-inflammatory form of regulated cell death characterized by the formation of membrane pores mediated by the gasdermin protein family. Two main activation pathways have been documented: the caspase-1-dependent canonical pathway and the caspase-4/5/11-dependent noncanonical pathway. Pyroptosis leads to cell swelling, lysis, and the subsequent release of inflammatory mediators, including interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). Chronic inflammation is a well-established foundation and driver for the development of metabolic diseases. Conversely, metabolic pathway dysregulation can also induce cellular pyroptosis. Recent studies have highlighted the significant role of pyroptosis modulation in various metabolic diseases, including type 2 diabetes mellitus, obesity, and metabolic (dysfunction) associated fatty liver disease. These findings suggest that pyroptosis may serve as a promising novel therapeutic target for metabolic diseases. This paper reviews an in-depth study of the current advancements in understanding the role of pyroptosis in the progression of metabolic diseases.

2.
Front Plant Sci ; 15: 1375898, 2024.
Article in English | MEDLINE | ID: mdl-38828221

ABSTRACT

Introduction: Water depth (WD) and snail abundance (SA) are two key factors affecting the growth of submersed aquatic plants in freshwater lake ecosystems. Changes in WD and SA drive changes in nutrients and other primary producers that may have direct or indirect effects on submersed plant growth, but which factor dominates the impact of both on aquatic plants has not been fully studied. Methods: To investigate the dominant factors that influence aquatic plant growth in plateau lakes, a one-year field study was conducted to study the growth of three dominant submersed macrophyte (i.e., Vallisneria natans, Potamogeton maackianus, and Potamogeton lucens) in Erhai Lake. Results: The results show that, the biomass of the three dominant plants, P.maackianus, is the highest, followed by P.lucens, and V.natans is the lowest. Meanwhile, periphyton and snails attached to P.maackianus are also the highest. Furthermore, WD had a positive effect on the biomass of two submersed macrophyte species of canopy-type P.maackianus and P.lucens, while it had a negative effect on rosette-type V.natans. Snail directly inhibited periphyton attached on V.natans and thereby increasing the biomass of aquatic plants, but the effect of snails on the biomass of the other two aquatic plants is not through inhibition of periphyton attached to their plants. Discussion: The dominant factors affecting the biomass of submersed macrophyte in Erhai Lake were determined, as well as the direct and indirect mechanisms of WD and snails on the biomass of dominant submersed macrophyte. Understanding the mechanisms that dominate aquatic plant change will have implications for lake management and restoration.

3.
Heliyon ; 10(11): e31250, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828344

ABSTRACT

This study aimed to ascertain the delayed effects of various exposure temperatures on infectious diarrhea. We performed a Bayesian random-effects network meta-analysis to calculate relative risks (RR) with 95 % confidence intervals (95 % CI). The heterogeneity was analyzed by subgroup analysis. There were 25 cross-sectional studies totaling 6858735 patients included in this analysis, with 12 articles each investigating the effects of both hyperthermia and hypothermia. Results revealed that both high temperature (RRsingle = 1.22, 95%CI:1.04-1.44, RRcum = 2.96, 95%CI:1.60-5.48, P < 0.05) and low temperature (RRsingle = 1.17, 95%CI:1.02-1.37, RRcum = 2.19, 95%CI:1.33-3.64, P < 0.05) significantly increased the risk of infectious diarrhea, while high temperature caused greater. As-sociations with strengthening in bacillary dysentery were found for high temperatures (RRcum = 2.03, 95%CI:1.41-3.01, P < 0.05; RRsingle = 1.17, 95%CI:0.90-1.62, P > 0.05), while the statistical significance of low temperatures in lowering bacterial dysentery had vanished. This investigation examined that high temperature and low temperature were the conditions that posed the greatest risk for infectious diarrhea. This research offers fresh perspectives on preventing infectious diarrhea and will hopefully enlighten future studies on the impact of temperature management on infectious diarrhea.

4.
Eur J Gastroenterol Hepatol ; 36(7): 916-923, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829944

ABSTRACT

Infections significantly increase mortality in acute liver failure (ALF) patients, and there are no risk prediction models for early diagnosis and treatment of infections in ALF patients. This study aims to develop a risk prediction model for bacterial infections in ALF patients to guide rational antibiotic therapy. The data of ALF patients admitted to the Second Hospital of Hebei Medical University in China from January 2017 to January 2022 were retrospectively analyzed for training and internal validation. Patients were selected according to the updated 2011 American Association for the Study of Liver Diseases position paper on ALF. Serological indicators and model scores were collected within 24 h of admission. New models were developed using the multivariate logistic regression analysis. An optimal model was selected by receiver operating characteristic (ROC) analysis, Hosmer-Lemeshow test, the calibration curve, the Brier score, the bootstrap resampling, and the decision curve analysis. A nomogram was plotted to visualize the results. A total of 125 ALF patients were evaluated and 79 were included in the training set. The neutrophil-to-lymphocyte ratio and sequential organ failure assessment (SOFA) were integrated into the new model as independent predictive factors. The new SOFA-based model outperformed other models with an area under the ROC curve of 0.799 [95% confidence interval (CI): 0.652-0.926], the superior calibration and predictive performance in internal validation. High-risk individuals with a nomogram score ≥26 are recommended for antibiotic therapy. The new SOFA-based model demonstrates high accuracy and clinical utility in guiding antibiotic therapy in ALF patients.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Liver Failure, Acute , Nomograms , Organ Dysfunction Scores , ROC Curve , Humans , Female , Male , Liver Failure, Acute/diagnosis , Middle Aged , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Risk Assessment , Retrospective Studies , Adult , Anti-Bacterial Agents/therapeutic use , Risk Factors , China/epidemiology , Predictive Value of Tests , Neutrophils , Reproducibility of Results , Lymphocyte Count
5.
Int J Biol Macromol ; : 133095, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866265

ABSTRACT

Mussel byssal proteins are of biomimetic importance for the development of novel underwater bio-adhesive agents. It is important to maintain a reduced state during the process of byssus adhesion. There are 19 mussel foot proteins (MFPs) have been reported in previous studies, among which only MFP-6 had been confirmed as an antioxidant protein in mussel byssus due to the function of cysteines, and playing an essential role in the redox balance of mussel byssus during adhesion process. Although the other four MFPs (MFP-16 ~ MFP-19) also have abundant cysteines, their function is still unknown. In this study, a novel mussel foot protein, named MFP-20, was identified from Mytilus coruscus foot. The sequential features, expression profile, and function of recombinant MFP-20 were verified. The results showed that MFP-20 has more abundant cysteines than other MFPs, the relative expression of mfp-20 was upregulated in Fe3+ stress and low pH seawater. In addition, different adhesive substrates induced significant changes of expression level of mfp-20. Furthermore, rMFP-20 showed strong antioxidant capacity in the DPPH assay, and the abundant cysteines in its sequence may play vital roles in the antioxidation activity. Our findings revealed the possible function of MFP-20 with a totally different sequence from the reported MFP-6 and provided new clues for exploring the redox balance of mussel byssus during the adhesion process.

6.
Phys Rev Lett ; 132(21): 210202, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856248

ABSTRACT

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally, we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided device-independent context. These criteria serve as tools for identifying potential asymmetric dimensionality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we experimentally observe asymmetric structures of EPR steering in the C^{3}⊗C^{3} Hilbert space. Our Letter offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential applications in asymmetric high-dimensional quantum information tasks.

7.
Org Lett ; 26(23): 4986-4991, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38842488

ABSTRACT

We herein disclose a highly efficient protocol for the esterification and etherification of alcohols, leveraging a Sc(OTf)3-catalyzed ring-strain release event in the meticulously designed, chromatographically stable mixed anhydrides or benzyl esters that incorporate an intramolecular donor-acceptor cyclopropane (DAC). This versatile method facilitates the straightforward functionalization of sugar, terpene, and steroid alcohols under mild acidic conditions, as showcased by the single-catalyst-driven, dual protection of sugar diol.

8.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791136

ABSTRACT

DNA methylation is an important mechanism for epigenetic modifications that have been shown to be associated with responses to plant development. Previous studies found that inverted Populus yunnanensis cuttings were still viable and could develop into complete plants. However, the growth status of inverted cuttings was weaker than that of upright cuttings, and the sprouting time of inverted cuttings was later than that of upright cuttings. There is currently no research on DNA methylation patterns in inverted cuttings of Populus yunnanensis. In this study, we detected genome-wide methylation patterns of stem tips of Populus yunnanensis at the early growth stage and the rapid growth stage by Oxford Nanopore Technologies (ONT) methylation sequencing. We found that the methylation levels of CpG, CHG, CHH, and 6mA were 41.34%, 33.79%, 17.27%, and 12.90%, respectively, in the genome of inverted poplar cuttings, while the methylation levels of the four methylation types were higher in the genome of upright poplar cuttings than in inverted cuttings, 41.90%, 34.57%, 18.09%, and 14.11%, suggesting important roles for DNA methylation in poplar cells. In all comparison groups, CpG-type methylation genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were annotated to pathways associated with carbon metabolism, ribosome biogenesis in eukaryotes, glycolysis/gluconeogenesis, pyruvate metabolism, and mRNA detection pathways, suggesting that different biological processes are activated in upright and inverted cuttings. The results show that methylation genes are commonly present in the poplar genome, but only a few of them are involved in the regulation of expression in the growth and development of inverted cuttings. From this, we screened the DET2 gene for significant differences in methylation levels in upright or inverted cuttings. The DET2 gene is a key gene in the Brassinolide (BRs) synthesis pathway, and BRs have an important influence on the growth and development process of plants. These results provide important clues for studying DNA methylation patterns in P. yunnanensis.


Subject(s)
DNA Methylation , Gene Expression Regulation, Plant , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , Epigenesis, Genetic , Genome, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Front Neurorobot ; 18: 1395652, 2024.
Article in English | MEDLINE | ID: mdl-38765869

ABSTRACT

In Human-Robot Interaction (HRI), accurate 3D hand pose and mesh estimation hold critical importance. However, inferring reasonable and accurate poses in severe self-occlusion and high self-similarity remains an inherent challenge. In order to alleviate the ambiguity caused by invisible and similar joints during HRI, we propose a new Topology-aware Transformer network named HandGCNFormer with depth image as input, incorporating prior knowledge of hand kinematic topology into the network while modeling long-range contextual information. Specifically, we propose a novel Graphformer decoder with an additional Node-offset Graph Convolutional layer (NoffGConv). The Graphformer decoder optimizes the synergy between the Transformer and GCN, capturing long-range dependencies and local topological connections between joints. On top of that, we replace the standard MLP prediction head with a novel Topology-aware head to better exploit local topological constraints for more reasonable and accurate poses. Our method achieves state-of-the-art 3D hand pose estimation performance on four challenging datasets, including Hands2017, NYU, ICVL, and MSRA. To further demonstrate the effectiveness and scalability of our proposed Graphformer Decoder and Topology aware head, we extend our framework to HandGCNFormer-Mesh for the 3D hand mesh estimation task. The extended framework efficiently integrates a shape regressor with the original Graphformer Decoder and Topology aware head, producing Mano parameters. The results on the HO-3D dataset, which contains various and challenging occlusions, show that our HandGCNFormer-Mesh achieves competitive results compared to previous state-of-the-art 3D hand mesh estimation methods.

10.
J Colloid Interface Sci ; 670: 142-151, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761567

ABSTRACT

Transition metal-based oxyhydroxides (MOOH) have garnered significant attention as promising catalyst for the Oxygen Evolution Reaction (OER). However, the direct synthesis of MOOH poses challenges due to the instability of trivalent cobalt and nickel salts, attrivuted to their high oxidation states. In this study, theoretical computations predicted that Co(OH)2 nanosheets are exclusively formed on carbon structures, owing to the stronger binding energy between CoOOH and CC compared to Co(OH)2. Furthermore, the presence of FeOOH interface reduces the binding energy between CoOOH and carbon structure. Experiment evidence confirms that CoOOH can be directly synthesized through controlled epitaxial growth on an FeOOH interface using a hydrothermal method. Moreover, the in-situ doping of iron leads to the formation of high-quality Fe0.35Co0.65OOH with exceptional OER performance, displaying a low overpotential of 240 mV at 10 mA cm-2 and a small Tafel slope of 43 mV dec-1. Density functional theory (DFT) calculations uncover the substantial enhancement of oxygen-containing species adsorption abilities by Fe0.35Co0.65OOH, resulting in improved OER activity. This work presents a promising strategy for the efficient preparation of layered cobalt oxyhydroxides, enabling efficient energy conversion and storage.

11.
Bioelectrochemistry ; 158: 108727, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38728815

ABSTRACT

Herein, we demonstrate a simple, homogenous and label-free electrochemical biosensing system for sensitive nucleic acid detection based on target-responsive porous materials and nuclease-triggered target recycling amplification. The Fe(CN)63- reporter was firstly sealed into the pores of Fe3O4 nanoparticles by probe DNA. Target DNA recognition triggered the controllable release of Fe(CN)63- for the redox reaction with the electron mediator of methylene blue enriched in the dodecanethiol assembled electrode and thereby generating electrochemical signal. The exonuclease III (Exo III)-assisted target recycling and the catalytic redox recycling between Fe(CN)63- and methylene blue contributed for the enhanced signal response toward target recognition. The low detection limit toward target was obtained as 478 fM and 1.6 pM, respectively, by square wave voltammetry and cyclic voltammetry methods. It also possessed a well-discrimination ability toward mismatched strands and high tolerance to complex sample matrix. The coupling of bio-gated porous nanoparticles, nuclease-assisted target amplification and catalytic redox recycling afforded the sensing system with well-controllable signal responses, sensitive and selective DNA detection, and good stability, reusability and reproducibility. It thus opens a new avenue toward the development of simple but sensitive electrochemical biosensing platform.


Subject(s)
Biosensing Techniques , DNA , Electrochemical Techniques , Limit of Detection , Oxidation-Reduction , Biosensing Techniques/methods , DNA/chemistry , Electrochemical Techniques/methods , Catalysis , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Methylene Blue/chemistry
12.
J Hazard Mater ; 473: 134652, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781854

ABSTRACT

Herein, a highly efficient As(III) purifier Ce-Mn@N201 with excellent reusability was developed by stepwise precipitating hydrated cerium(IV) oxides (HCO) and hydrated manganese(IV) oxides (HMO) inside N201, a widely-used gel-type anion exchange resin. Owing to confinement of unique nanopores in N201, the in-situ generated nanoparticles (NPs) inside Ce-Mn@N201 were highly dispersed with ultra-small sizes of around 2.6 nm. Results demonstrated that HMO NPs effectively oxidized As(III) to As(V) with the conversion of Mn(IV) to Mn(II), while the generated Mn2+ was mostly re-adsorbed onto the negatively-charged surface of HMO NPs. During the regeneration process by simple alkaline treatment, the re-adsorbed Mn2+ was firstly precipitated as (hydr)oxides of Mn(II) and then oxidized to HMO NPs by dissolved oxygen to fully refresh its oxidation capacity. Though HCO NPs mainly served as adsorbent for arsenic, they could partially oxidize As(III) to As(V) at the beginning, while the oxidation capacities continuously diminished with the irreversible conversion of Ce(IV) to Ce(III). In 10 consecutive adsorption-regeneration cycle, Ce-Mn@N201 efficiently decontaminated As(III) from 500 µg/L to below 5 µg/L with Mn2+ leaching less than 0.3% per batch. During 3 cyclic fixed-bed adsorptions, Ce-Mn@N201 steadily produced 8500-9150 bed volume (BV) and 3150-3350 BV drinkable water from the synthesized and real groundwater, respectively, with Mn leaching in effluent constantly < 100 µg/L.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124447, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38761471

ABSTRACT

Label-free nucleic acid fluorescent probes are gaining popularity due to their low cost and ease of application. However, the primary challenges associated with label-free fluorescent probes stem from their tendency to interact with other biomolecules, such as RNA, proteins, and enzymes, which results in low specificity. In this work, we have developed a simple detection platform that utilizes Fe3O4@PPy in combination with a label-free nucleic acid probe, 1,1,2,2-tetrakis[4-(2-bromo-ethoxy)phenyl]ethene (TTAPE) or Malachite Green (MG), for highly selective detection of metal ions, acetamiprid, and thrombin. Fe3O4@PPy not only adsorbs aptamers through electrostatic interactions, π-π bonding, and hydrogen bonding, but also quenches the fluorescence of the TTAPE/MG. Upon the addition of target compounds, the aptasensor separates from Fe3O4@PPy through magnetic separation. Moreover, by changing different aptamers, the aptasensor was applied to detect metal ions, acetamiprid, and thrombin, with the turned-on photoluminescence (PL) emission intensity recorded and showing linearity to the concentrations of targets. The robustness of method was demonstrated by applying it to real samples, which included vegetables (for detecting acetamiprid with LODs of 0.02 and 0.04 ng/L), serum samples (for detecting thrombin with LODs of 5.5 and 4.3 nM), and water samples (for detecting Pb2+ with an LOD of 0.17 nM). Therefore, due to its impressive selectivity and sensitivity, the Fe3O4@PPy aptasensor could be utilized as a universal detection platform for various clinical and environmental applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescent Dyes , Neonicotinoids , Spectrometry, Fluorescence , Thrombin , Aptamers, Nucleotide/chemistry , Thrombin/analysis , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Neonicotinoids/analysis , Spectrometry, Fluorescence/methods , Limit of Detection , Rosaniline Dyes/analysis , Rosaniline Dyes/chemistry , Humans , Polymers/chemistry
14.
Adv Mater ; : e2402435, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723286

ABSTRACT

III-V semiconductors possess high mobility, high frequency response, and detection sensitivity, making them potentially attractive for beyond-silicon electronics applications. However, the traditional heteroepitaxy of III-V semiconductors is impeded by a significant lattice mismatch and the necessity for extreme vacuum and high temperature conditions, thereby impeding their in situ compatibility with flexible substrates and silicon-based circuits. In this study, a novel approach is presented for fabricating ultrathin InSb single-crystal nanosheets on arbitrary substrates with a thickness as thin as 2.4 nm using low-thermal-budget van der Waals (vdW) epitaxy through chemical vapor deposition (CVD). In particular, in situ growth has been successfully achieved on both silicon-based substrates and flexible polyimide (PI) substrates. Notably, the growth temperature required for InSb nanosheets (240 °C) is significantly lower than that employed in back-end-of-line processes (400 °C). The field effect transistor devices based on fabricated ultrathin InSb nanosheets exhibit ultra-high on-off ratio exceeding 108 and demonstrate minimal gate leakage currents. Furthermore, these ultrathin InSb nanosheets display p-type characteristics with hole mobilities reaching up to 203 cm2 V-1 s-1 at room temperatures. This study paves the way for achieving heterogeneous integration of III-V semiconductors and facilitating their application in flexible electronics.

15.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621945

ABSTRACT

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Subject(s)
Diabetic Nephropathies , Vascular Endothelial Growth Factor A , Rats , Male , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Ultrafiltration , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Fibrosis , Hypoxia , Signal Transduction , RNA, Messenger/metabolism
16.
Sex Med Rev ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629860

ABSTRACT

Erectile dysfunction (ED) is one of the most common male sexual dysfunctions and is related to many pathogenic factors. However, first-line treatment, represented by phosphodiesterase 5 inhibitors, is unable to maintain long-term efficacy. Extracellular vesicles (EVs) have recently attracted the attention of researchers in the fields of cardiovascular disease, neurologic disease, and regenerative medicine and may become a treatment for ED. This article reviews recent applications of EVs in the treatment of ED from the aspects of the source, the therapeutic mechanism, and the strategies to enhance therapeutic efficacy. These research advances lay the foundation for further research and provide references for in-depth understanding of the therapeutic mechanism and possible clinical application of EVs in ED.

17.
Article in English | MEDLINE | ID: mdl-38602489

ABSTRACT

Common clinical rhinitis is characterized by different types of cases and class imbalance. Its prediction belongs to multiple output classification. Low recognition rate and poor generalization performance often occur for minority class. Therefore, we propose a novel integrated classification model, ARF-OOBEE, which transforms the multi-output classification to multi-label classification and multi-class classification. The multi-label classifier automatically adjusts the number and depth of integrated forest learners according to the imbalance ratio of single class label in a subset. It can effectively reduce the impact of class imbalance on classification and improve prediction performance of both majority or minority class concurrently. Also, we build a multi-class classification based on out-of-bag Extra-Tree to accomplish finer classification for the predicted labels. In addition, we calculate the feature importance for rhinitis on the grounds of the purity of nodes in decision-making tree inside Random Forest and study the correlation between rhinitis features. We conduct 12 folds cross-validation experiments on 461 cases of clinical rhinitis. The outcomes show that the evaluation indicators of ARF-OOBEE, such as Sensitivity, Specificity, Accuracy, F1-Score, AUC, and G-Mean are 74.9%,86.5%,92.0%,78.3%,95.3%, and 79.9%, respectively. In comparison to the other methods, ARF-OOBEE has better evaluation indicator and is more effective for the early clinical diagnosis of rhinitis.

18.
Sci Rep ; 14(1): 9294, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653779

ABSTRACT

Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, the mechanism is still poorly understood. In this article, we analyzed the molecular action network driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO database were used for the identification of differentially expressed genes (DEGs).Common DEGs were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. Eventually, we validated molecular docking and medication prediction. We found 62 common DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in diagnostic tests on independent datasets. In particular, we observed an upregulation of functions associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in clinical practice.


Subject(s)
COVID-19 , Computational Biology , Hypertension, Pulmonary , Molecular Docking Simulation , Humans , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/drug therapy , Computational Biology/methods , SARS-CoV-2 , Machine Learning , Biomarkers , COVID-19 Drug Treatment
19.
Heliyon ; 10(8): e28801, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638993

ABSTRACT

Objective: To investigate the association between air pollutants and the incidence of tuberculosis (TB) through a systematic review and meta-analysis, and to provide directions for future research and prevention of TB. Methods: A search was conducted for all literature related to the incidence of TB and air pollution in the database. We screened the retrieved articles and proceeded statistical analyses using random effects models to investigate the relationships between five air pollutants (PM2.5, PM10, SO2, NO2 and O3) and the incidence of TB. Results: The initial search identified 100 pieces of literature and 9 studies met the screening criteria after the screening. The single-day lagged risk ratio (RR) and 95% Confidence Intervals (CIs) for the combined effects estimates are as follows: PM2.5: 1.059 (0.966, 1.160); PM10: 1.000 (0.996, 1.004); SO2: 0.980 (0.954, 1.007); NO2: 1.011 (0.994, 1.027); O3: 0.994 (0.980,1.008). The cumulative lagged results for these five pollutants are listed like this: PM2.5: 1.095 (0.983, 1.219); PM10: 1.035 (1.006, 1.066); SO2: 0.964 (0.830, 1.121); NO2: 1.037 (1.010, 1.065); O3: 0.982 (0.954, 1.010). Conclusion: The single-day lag effects of PM2.5, PM10, SO2, NO2, and O3 are not statistically significantly relevant for the occurrence of TB. However, the cumulative lag results show that both PM10 and NO2 contribute to the prevalence of TB, while the statistical relationship between the cumulative lag effects of PM2.5, SO2, and O3 and the onset of TB remains unknown.

20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 416-421, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660845

ABSTRACT

OBJECTIVE: To explore the effect of shikonin on autophagy and apoptosis of human promyelocytic leukemia cells and its possible mechanism. METHODS: Human promyelocytic leukemia cells NB4 in the logarithmic growth phase were divided into control group (untreated NB4 cells), shikonin group (0.3 µmol/L shikonin treatment), 740Y-P group (15 µmol/L PI3K/Akt/mTOR pathway activator 740Y-P treatment), shikonin+740Y-P group (0.3 µmol/L shikonin and 15 µmol/L 740Y-P co-treatment), after 24 hours of treatment, the cells were used for subsequent experiments. CCK-8 method was used to detect cell viability, monodansylcadaverine (MDC) staining to detect the aggregation of autophagic vesicles, flow cytometry to detect cell apoptosis, and Western blot to detect the expression of Beclin1, LC3, p62, Bax, cleaved caspase-3, Bcl-2 and PI3K/Akt/mTOR pathway related proteins. RESULTS: Compared with the control group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were increased in the shikonin group, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were decreased (all P < 0.05). Compared with the control group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were decreased, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were increased in the 740Y-P group (all P < 0.05). Compared with the shikonin group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were decreased, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were increased in the shikonin+740Y-P group (all P < 0.05). Compared with the control group, the expression of PI3K/Akt/mTOR pathway related proteins p-PI3K, p-Akt, and p-mTOR in NB4 cells were significantly decreased in the shikonin group, while those in the 740Y-P group were increased (all P < 0.05). Compared with the shikonin group, the expressions of p-PI3K, p-Akt, and p-mTOR proteins in NB4 cells were significantly increased in the shikonin+740Y-P group (all P < 0.05). CONCLUSION: Shikonin may promote autophagy and apoptosis of NB4 cells by inhibiting PI3K/Akt/mTOR pathway.


Subject(s)
Apoptosis , Autophagy , Leukemia, Promyelocytic, Acute , Naphthoquinones , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , Autophagy/drug effects , Apoptosis/drug effects , Naphthoquinones/pharmacology , Cell Line, Tumor , Leukemia, Promyelocytic, Acute/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Cell Survival/drug effects , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Beclin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...