Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.062
Filter
1.
PLoS One ; 19(6): e0304325, 2024.
Article in English | MEDLINE | ID: mdl-38833445

ABSTRACT

BACKGROUND: Stroke patients with dysphagia and family caregivers will experience multiple transitions during the whole process of the disease and various nursing needs will be generated. There is a lack of knowledge about their experiences at different transition stages. Thus, we aimed to explore the transition experiences of patients with post stroke dysphagia and family caregivers from admission to discharge home. METHODS: A semi-structured interview based on Meleis's transition theory was used during hospitalization and telephone follow-up interviews were conducted in the first, third, and sixth month after the diagnosis of dysphagia. Interview transcripts were analyzed using the conventional content analysis method. RESULTS: A total of 17 participants enrolled in the first face-to-face interview, 16 participants took part in the first month's telephone follow-up interview, 14 participants in the third month, and 12 participants in the sixth month. The transition experiences of patients with post stroke dysphagia and family caregivers could be summarized into three themes: (1)transition from onset to admission; (2)transition from discharge to other rehabilitation institutions; and (3)transition from discharge to home. Each theme had identified interrelated subthemes. CONCLUSIONS: The experiences of patients with post stroke dysphagia and family caregivers during transition are a dynamic process with enormous challenges in each phase. Collaboration with health care professionals, follow-up support after discharge, and available community and social support should be integrated into transitional nursing to help patients facilitate their transition.


Subject(s)
Caregivers , Deglutition Disorders , Qualitative Research , Stroke , Humans , Deglutition Disorders/psychology , Male , Female , Caregivers/psychology , Stroke/psychology , Stroke/complications , Aged , Middle Aged , Longitudinal Studies , Patient Discharge , Stroke Rehabilitation , Aged, 80 and over , Adult
2.
Gland Surg ; 13(4): 528-539, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38720676

ABSTRACT

Background: The incidence of papillary thyroid cancer (PTC) has increased dramatically, and it is susceptible to cervical lymph node metastasis (LNM), predominantly in the ipsilateral cervical central lymph node metastasis (CLNM). Ipsilateral cervical CLNM affects patients' surgical options and survival rates. In this study, we integrated multiple factors to establish a nomogram-based preoperative prediction model of ipsilateral cervical CLNM in PTC. Methods: Data were retrospectively collected from 609 patients with PTC admitted to Peking University International Hospital, all of whom underwent ipsilateral cervical lymph node dissection. They were randomly divided into a modeling set and validation set in the ratio of 7:3. Binary logistic regression was used to analyze independent risk factors for ipsilateral cervical CLNM in PTC and to construct a nomogram model. The performance of nomogram CLNM prediction was evaluated by the receiver operating characteristic (ROC) curve and calibration curve. Results: Binary Logistic Regression showed that age, history of osteoporosis, complicated by Hashimoto's thyroiditis, enlarged lymph nodes in the central neck, and extrathyroidal extension were risk factors for ipsilateral cervical CLNM. Combining these five independent risk factors, a nomogram prediction model was developed. In the modeling set, the area under the curve (AUC) of the nomogram ROC was 0.782 [95% confidence interval (CI): 0.730-0.833], and the sensitivity and specificity of the model were 0.761 and 0.763, respectively, with a well-calibrated curve fit. Moreover, the model presented better discrimination than any of the independent risk factors. The nomogram performed well in the validation set (AUC 0.753; 95% CI: 0.648-0.858). Conclusions: A non-invasive, and accurate nomogram prediction model for ipsilateral cervical CLNM of PTC was established. It can help physicians identify patients with a high risk of ipsilateral cervical CLNM of PTC preoperative for individualized treatment.

3.
Food Chem ; 452: 139603, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754166

ABSTRACT

Food fraud is common in the tuna industry because of the economic benefits involved. Ensuring the authenticity of tuna species is crucial for protecting both consumers and tuna stocks. In this study, GC-Q-TOF and UPLC-Q/Orbitrap mass spectrometry-based metabolomics were used to investigate the metabolite profiles of three commercial tuna species (skipjack tuna, bigeye tuna and yellowfin tuna). A total of 22 and 77 metabolites were identified with high confidence using GC-Q-TOF and UPLC-Q/Orbitrap mass spectrometry, respectively. Further screening via chemometrics revealed that 38 metabolites could potentially serve as potential biomarkers. Hierarchical cluster analysis showed that the screened metabolite biomarkers successfully distinguished the three tested tuna species. Furthermore, a total of 27 metabolic pathways were identified through enrichment analysis based on the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways.


Subject(s)
Metabolomics , Tuna , Tuna/metabolism , Animals , Chromatography, High Pressure Liquid , Seafood/analysis , Chemometrics , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Biomarkers/metabolism , Biomarkers/analysis
4.
J Agric Food Chem ; 72(20): 11672-11681, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713521

ABSTRACT

Crustacean shellfish are major allergens in East Asia. In the present study, a major allergic protein in crustaceans, tropomyosin, was detected accurately using multiple reaction monitoring mode-based mass spectrometry, with shared signature peptides identified through proteomic analysis. The peptides were deliberately screened through thermal stability and enzymatic digestion efficiency to improve the suitability and accuracy of the developed method. Finally, the proposed method demonstrated a linear range of 0.15 to 30 mgTM/kgfood (R2 > 0.99), with a limit of detection of 0.15 mgTM/kg food and a limit of quantification of 0.5mgTM/kgfood and successfully applied to commercially processed foods, such as potato chips, biscuits, surimi, and hot pot seasonings, which evidenced the applicability of proteomics-based methodology for food allergen analysis.


Subject(s)
Allergens , Crustacea , Mass Spectrometry , Peptides , Proteomics , Shellfish , Tropomyosin , Tropomyosin/chemistry , Tropomyosin/immunology , Tropomyosin/analysis , Animals , Proteomics/methods , Allergens/chemistry , Allergens/analysis , Peptides/chemistry , Shellfish/analysis , Mass Spectrometry/methods , Crustacea/chemistry , Arthropod Proteins/chemistry , Arthropod Proteins/immunology , Shellfish Hypersensitivity/immunology , Food Hypersensitivity/immunology , Food, Processed
5.
Food Chem ; 453: 139691, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781904

ABSTRACT

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Subject(s)
Peptides , Saccharomyces cerevisiae , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Peptides/chemistry , Humans , Taste , Models, Molecular , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Male , Proteomics , Female , Amino Acid Sequence
6.
Int Immunopharmacol ; 134: 112191, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759369

ABSTRACT

Social behavior is inextricably linked to the immune system. Although IFN-γ is known to be involved in social behavior, yet whether and how it encodes social memory remains unclear. In the current study, we injected with IFN-γ into the lateral ventricle of male C57BL/6J mice, and three-chamber social test was used to examine the effects of IFN-γ on their social preference and social memory. The morphology of microglia in the hippocampus, prelimbic cortex and amygdala was examined using immunohistochemistry, and the phenotype of microglia were examined using immunohistochemistry and enzyme-linked immunosorbent assays. The IFN-γ-injected mice were treated with lipopolysaccharide, and effects of IFN-γ on behavior and microglial responses were evaluated. STAT1 pathway and microglia-neuron interactions were examined in vivo or in vitro using western blotting and immunohistochemistry. Finally, we use STAT1 inhibitor or minocycline to evaluated the role of STAT1 in mediating the microglial priming and effects of primed microglia in IFN-γ-induced social dysfunction. We demonstrated that 500 ng of IFN-γ injection results in significant decrease in social index and social novelty recognition index, and induces microglial priming in hippocampus, characterized by enlarged cell bodies, shortened branches, increased expression of CD68, CD86, CD74, CD11b, CD11c, CD47, IL-33, IL-1ß, IL-6 and iNOS, and decreased expression of MCR1, Arg-1, IGF-1 and BDNF. This microglia subpopulation is more sensitive to LPS challenge, which characterized by more significant morphological changes and inflammatory responses, as well as induced increased sickness behaviors in mice. IFN-γ upregulated pSTAT1 and STAT1 and promoted the nuclear translocation of STAT1 in the hippocampal microglia and in the primary microglia. Giving minocycline or STAT1 inhibitor fludarabin blocked the priming of hippocampal microglia induced by IFN-γ, ameliorated the dysfunction in hippocampal microglia-neuron interactions and synapse pruning by microglia, thereby improving social memory deficits in IFN-γ injected mice. IFN-γ initiates STAT1 pathway to induce priming of hippocampal microglia, thereby disrupts hippocampal microglia-neuron interactions and neural circuit link to social memory. Blocking STAT1 pathway or inhibiting microglial priming may be strategies to reduce the effects of IFN-γ on social behavior.


Subject(s)
Hippocampus , Interferon-gamma , Mice, Inbred C57BL , Microglia , STAT1 Transcription Factor , Signal Transduction , Social Behavior , Animals , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , STAT1 Transcription Factor/metabolism , Male , Interferon-gamma/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/immunology , Mice , Signal Transduction/drug effects , Lipopolysaccharides , Memory/drug effects , Cells, Cultured , Neurons/drug effects , Neurons/immunology , Neurons/metabolism
7.
NPJ Breast Cancer ; 10(1): 37, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802426

ABSTRACT

Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before and after patients received NACT. We then compiled transcriptomes and drug response profiles for all models. Transcriptomic analysis identified the enrichment of aberrant protein homeostasis pathways in models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor, was prioritized for validation in vivo and demonstrated efficacy as a single agent in multiple PDX models of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between pevonedistat activity and post-translational modification (PTM) machinery, particularly involving neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in models exhibiting a favorable response to pevonedistat compared to those with a less favorable response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may prove effective in combating chemoresistant TNBC.

8.
J Leukoc Biol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776408

ABSTRACT

BACKGROUND: Aim to investigate the predictive value of changes in presepsin (PSEP), procalcitonin (PCT), high-sensitivity C-reactive protein (hsCRP), and interleukin-6 (IL-6) levels to for mortality in septic patients in intensive care unit (ICU). METHOD: This study enrolled septic patients between November 2020 and December 2021. Levels of PSEP, PCT, hsCRP, and IL-6 were measured on 1st (PSEP_0, PCT_0, hsCRP_0, IL-6_0) and 3rd day (PSEP_3, PCT_3, hsCRP_3, IL-6_3). Follow-up was performed on days 3, 7, 14, 21, and 28 after enrollment. The outcome was all-cause death. RESULTS: The study included 119 participants, and the mortality was 18.5%. In univariable Cox proportional-hazards regression (Cox) analysis, △PSEP (= PSEP_3- PSEP_0) > 211.49 pg/ml (hazard ratio (HR) 2.70, 95% confidence interval (CI) 1.17-6.22), △PCT (= PCT_3- PCT_0) > -0.13 ng/ml (HR 7.31, 95% CI 2.68-19.80), △hsCRP (= hsCRP_3- hsCRP_0) > -19.29 mg/L (HR 6.89, 95% CI 1.61-29.40), and △IL-6 (= IL-6_3- IL-6_0) > 1.00 pg/ml (HR 3.13, 95% CI 1.35-7.24) indicated an increased risk of mortality. The composite concordance index for alterations in all four distinct biomarkers was highest (concordance index 0.83, 95% CI 0.76-0.91), suggesting the optimal performance of this panel in mortality prediction. In decision curve analysis, compared with the APACHE Ⅱ and SOFA scores, the combination of the four biomarkers had a larger net benefit. Interestingly, IL-6 was predominantly produced by monocytes upon LPS stimulation in PBMCs. CONCLUSIONS: △PSEP, △PCT, △hsCRP, and △IL-6 are reliable biomarkers for predicting mortality in septic patients in ICU, and their combination has the best performance.

9.
Food Res Int ; 187: 114462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763689

ABSTRACT

The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.


Subject(s)
Peptides , Species Specificity , Tuna , Animals , Peptides/analysis , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Seafood/analysis , Food Contamination/analysis , Fish Proteins/analysis
10.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771879

ABSTRACT

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
11.
Animal Model Exp Med ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567763

ABSTRACT

Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV-associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.

12.
Se Pu ; 42(4): 387-392, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38566428

ABSTRACT

The residual amount of halogenated solvents in olive oil is an important indicator of its quality. The National Olive Oil Quality Standard GB/T 23347-2021 states that the residual amount of individual halogenated solvents in olive oil should be ≤0.1 mg/kg and that the total residual amount of halogenated solvents should be ≤0.2 mg/kg. COI/T.20/Doc. No. 8-1990, which was published by the International Olive Council, describes the standard method used for the determination of halogenated solvents in olive oil. Unfortunately, this method is cumbersome, has poor repeatability and low automation, and is unsuitable for the detection and analysis of residual halogenated solvents in large quantities of olive oil. At present, no national standard method for determining residual halogenated solvents in olive oil is available in China. Thus, developing simple, efficient, accurate, and stable methods for the determination of residual halogenated solvents in olive oil is imperative. In this paper, a method based on automatic headspace gas chromatography was established for the determination of residual halogenated solvents, namely, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, dibromochloromethane, tetrachloroethylene, and bromoform, in olive oil. The samples were processed as follows. After mixing, 2.00 g (accurate to 0.01 g) of the olive oil sample was added into a 20 mL headspace injection bottle and immediately sealed for headspace gas chromatography analysis. Blank virgin olive oil was used to prepare a standard working solution and the external standard method for quantification. The solvents used in the preparation of halogenated solvent standard intermediates were investigated and methanol was selected as a replacement for N,N-dimethylacetamide to prepare a halogenated solvent standard intermediate owing to its safety. The effects of different injection times (1, 2, 3, 4, 5, 6 s), equilibration temperatures (60, 70, 80, 90, 100, 110, 120 ℃), and equilibration times (4, 5, 8, 10, 20, 30, 40 min) of the headspace sampler on the detection of the residual amounts of the six halogenated solvents were investigated. The optimal injection time and equilibration temperature were 3 s and 90 ℃, respectively. The method demonstrated good analytical performance for the six halogenated solvents when the equilibration time was 30 min. A methodological study was conducted on the optimized method, and the results showed that the six halogenated solvents exhibited good linear relationships in the range of 0.002-0.200 mg/kg, with correlation coefficients of ≥0.9991. The limits of detection (LODs) and quantification (LOQs) of 1,1,1-trichloroethane and bromoform were 0.0006 and 0.002 mg/kg, respectively. The LODs and LOQs of chloroform, carbon tetrachloride, dibromochloromethane, and tetrachloroethylene were 0.0003 and 0.001 mg/kg, respectively. The average recoveries under different spiked levels were 85.53%-115.93%, and the relative standard deviations (n=6) were 1.11%-8.48%. The established method was used to analyze 13 olive oil samples available in the market. Although no halogenated solvents were detected in these samples, a limited number of samples does not represent all olive oils. Hence, monitoring residual halogenated solvents in olive oil remains necessary for its safe consumption. The LOQs of the method for the six halogenated solvents were significantly lower than that of the COI/T.20/Doc. No. 8-1990 standard method (0.02 mg/kg). In addition, the developed method can be conducted under short operation times with high precision and degree of automation as well as good accuracy. Thus, the proposed method is suitable for the determination and analysis of the residues of the six halogenated solvents in large batches of olive oil samples.


Subject(s)
Tetrachloroethylene , Trichloroethanes , Olive Oil , Solvents/analysis , Gas Chromatography-Mass Spectrometry/methods , Tetrachloroethylene/analysis , Chloroform/analysis , Carbon Tetrachloride/analysis , Chromatography, Gas/methods , Trihalomethanes
13.
Acta Diabetol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558152

ABSTRACT

AIMS: To explore the correlation between visceral adipose tissue and albuminuria, and whether there is interaction between visceral adipose tissue and diabetes on albuminuria. METHODS: The study subjects were adult subjects (age ≥ 18 years) from the National Health and Nutrition Examination Surveys (NHANES) database of the USA in 2017-2018. Visceral fat area (VFA) was measured by dual-energy X-ray absorptiometry (DXA). Subjects were divided into three groups according to VFA: low (VFA 0-60cm2), medium (VFA 60-120 cm2) and high (VFA ≥ 120 cm2). Albuminuria was defined as urinary albumin-to-creatinine ratio (UACR) ≥ 30 mg/g. The statistical analysis software used is STATA 17.0. RESULTS: Data pertaining to 2965 participants (2706 without albuminuria) were included in the analysis. High VFA is an independent risk factor for albuminuria (OR 1.367, 95% CI 1.023-1.827). In the low-VFA group, there is no significant association between diabetes and albuminuria (OR 1.415, 95% CI 0.145-13.849). In the medium-VFA group, diabetes is an independent risk factor for albuminuria (OR 2.217, 95% CI 1.095-4.488). In the high-VFA group, diabetes is also an independent risk factor for albuminuria (OR 5.150, 95% CI 3.150-8.421). There is an additive interaction between high VFA (VFA ≥ 120 cm2) and diabetes on the effect of albuminuria (RERI 3.757, 95% CI 0.927-6.587, p = 0.009), while no multiplication interaction (OR 1.881, 95% CI 0.997-1.023, p = 0.141). CONCLUSIONS: High VFA may represent an independent risk factor for albuminuria. The amount of visceral fat may affect the effect of diabetes on albuminuria. The higher the visceral fat, the stronger the correlation between diabetes and albuminuria should be present. We suppose an additive interaction between VFA and diabetes on the effect of albuminuria.

14.
Front Bioeng Biotechnol ; 12: 1370685, 2024.
Article in English | MEDLINE | ID: mdl-38572355

ABSTRACT

The production of N-linked glycoproteins in genetically engineered Escherichia coli holds significant potential for reducing costs, streamlining bioprocesses, and enhancing customization. However, the construction of a stable and low-cost microbial cell factory for the efficient production of humanized N-glycosylated recombinant proteins remains a formidable challenge. In this study, we developed a glyco-engineered E. coli chassis to produce N-glycosylated proteins with the human-like glycan Gal-ß-1,4-GlcNAc-ß-1,3-Gal-ß-1,3-GlcNAc-, containing the human glycoform Gal-ß-1,4-GlcNAc-ß-1,3-. Our initial efforts were to replace various loci in the genome of the E. coli XL1-Blue strain with oligosaccharyltransferase PglB and the glycosyltransferases LsgCDEF to construct the E. coli chassis. In addition, we systematically optimized the promoter regions in the genome to regulate transcription levels. Subsequently, utilizing a plasmid carrying the target protein, we have successfully obtained N-glycosylated proteins with 100% tetrasaccharide modification at a yield of approximately 320 mg/L. Furthermore, we constructed the metabolic pathway for sialylation using a plasmid containing a dual-expression cassette of the target protein and CMP-sialic acid synthesis in the tetrasaccharide chassis cell, resulting in a 40% efficiency of terminal α-2,3- sialylation and a production of 65 mg/L of homogeneously sialylated glycoproteins in flasks. Our findings pave the way for further exploration of producing different linkages (α-2,3/α-2,6/α-2,8) of sialylated human-like N-glycoproteins in the periplasm of the plug-and-play E. coli chassis, laying a strong foundation for industrial-scale production.

15.
Plant Dis ; 108(4): 1062-1072, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640452

ABSTRACT

Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating diseases affecting wheat throughout the world. Breeding and growing resistant wheat cultivars is one of the most economic and effective methods to control the disease, and as such, identifying and mapping the new and effective resistance genes is critical. Baidatou, a Chinese wheat landrace, shows excellent field resistance to powdery mildew. To identify the resistance gene(s) in Baidatou, 170 F7:8 recombinant inbred lines (RILs) derived from the cross Mingxian 169/Baidatou were evaluated for powdery mildew response at the adult-plant stage in the experimental fields in Yangling (YL) of Shaanxi Province and Tianshui (TS) in Gansu Province in 2019, 2020, and 2021. The relative area under disease progress curve (rAUDPC) of Mingxian 169/Baidatou F7:8 RILs indicated that the resistance of Baidatou to powdery mildew was controlled by quantitative trait loci (QTLs). Based on bulk segregation analysis combined with the 660K single nucleotide polymorphism (SNP) array and genotyping by target sequencing (16K SNP) of the entire RIL population, two QTLs, QPmbdt.nwafu-2AS and QPmbdt.nwafu-3AS, were identified, and these accounted for up to 44.5% of the phenotypic variation. One of the QTLs was located on the 3.32 cM genetic interval on wheat chromosome 2AS between the kompetitive allele-specific PCR markers AX-111012288 and AX_174233809, and another was located on the 9.6 cM genetic interval on chromosome 3AS between the SNP markers 3A_684044820 and 3A_686681822. These markers could be useful for successful breeding of powdery mildew resistance in wheat.


Subject(s)
Ascomycota , Chromosome Mapping , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Disease Resistance/genetics , Ascomycota/physiology , Chromosomes, Plant/genetics , China , Plant Breeding
16.
J Proteome Res ; 23(5): 1559-1570, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38603467

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of different variants of concerns with immune evasion that have been prevalent over the past three years. Nanobodies, the functional variable regions of camelid heavy-chain-only antibodies, have garnered interest in developing neutralizing antibodies due to their smaller size, structural stability, ease of production, high affinity, and low immunogenicity, among other characteristics. In this work, we describe an integrated proteomics platform for the high-throughput screening of nanobodies against different SARS-CoV-2 spike variants. To demonstrate this platform, we immunized a camel with subunit 1 (S1) of the wild-type spike protein and constructed a nanobody phage library. The binding and neutralizing activities of the nanobodies against 72 spike variants were then measured, resulting in the identification of two nanobodies (C-282 and C-39) with broad neutralizing activity against six non-Omicron variants (D614G, Alpha, Beta, Gamma, Delta, Kappa) and five Omicron variants (BA.1-5). Their neutralizing capability was validated using in vitro pseudovirus-based neutralization assays. All these results demonstrate the utility of our proteomics platform to identify new nanobodies with broad neutralizing capability and to develop a treatment for patients with SARS-CoV-2 variant infection in the future.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Camelus , Proteomics , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Proteomics/methods , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Animals , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Neutralization Tests
17.
Endokrynol Pol ; 75(2): 192-198, 2024.
Article in English | MEDLINE | ID: mdl-38646991

ABSTRACT

INTRODUCTION: This study was aimed at establishing a pregnancy-specific lipid reference interval (RI) in pregnant women in a single-centre in the Beijing area of China, simultaneously exploring the predictive value of lipid levels in early pregnancy for gestational diabetes mellitus (GDM). MATERIAL AND METHODS: From October 2017 to August 2019, Peking University International Hospital established records for 1588 pregnant women, whose lipid profiles were determined during the first and third trimesters. The Hoffmann technique was used to calculate gestation-specific lipid RI. The 95% reference range for gestational lipids was also estimated for 509 healthy pregnant women screened according to the Clinical and Laboratory Standards Institute guideline. Multivariate logistic regression analysis was used to calculate odds ratios (OR) and their 95% confidence interval (CI), and the receiver operating characteristic (ROC) curve was applied to assess the predictive value of lipids in the first trimester for the diagnosis of GDM. RESULTS: Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were significantly higher in the third trimester (p < 0.05). Hoffmann technique RI of the lipid profiles and the 95% reference range of the lipid profiles in healthy pregnant women did not differ statistically (p > 0.05). TC, TG, and LDL-C levels were higher in the GDM group in the first trimester (p < 0.05), and the risk of GDM was 2.1 times higher in women with higher TG (95% CI: 1.13-3.77, p < 0.05). The optimal ROC cut-off for TG to predict GDM was 2.375 mmol / L, and the area under the ROC curve was 0.622 (95% CI: 0.592-0.751), with a sensitivity of 73.7% and a specificity of 59.3%. CONCLUSIONS: This study established pregnancy-specific lipid RI for pregnant women in a single centre in the Beijing area of China. Pregnant women with TG ≥ 2.375 mmol/L in the first trimester were at significantly increased risk for GDM.


Subject(s)
Diabetes, Gestational , Lipids , Humans , Female , Pregnancy , Diabetes, Gestational/diagnosis , Diabetes, Gestational/blood , Adult , Prospective Studies , Reference Values , Lipids/blood , Predictive Value of Tests , China , Pregnancy Trimester, First/blood , Triglycerides/blood , Pregnancy Trimester, Third/blood , ROC Curve
18.
Helicobacter ; 29(2): e13077, 2024.
Article in English | MEDLINE | ID: mdl-38682268

ABSTRACT

BACKGROUND: A novel regimen with high-dose dual therapy (HDDT) has emerged, but its impact on the gut microbiota is not well understood. This study aimed to evaluate the impact of HDDT on the gut microbiota and compare it with that of bismuth quadruple therapy (BQT). METHODS: We enrolled outpatients (18-70 years) diagnosed with Helicobacter pylori infection by either histology or a positive 13C-urea breath test (13C-UBT) and randomly assigned to either the BQT or HDDT group. Subjects consented to provide fecal samples which were collected at baseline, Week 2, and Week 14. Amplification of the V1 and V9 regions of the 16S rRNA was conducted followed by high-throughput sequencing. RESULTS: Ultimately, 78 patients (41 patients in the HDDT group and 37 in the BQT group) were enrolled in this study. Eradication therapy significantly altered the diversity of the gut microbiota. However, the alpha diversity rebounded only in the HDDT group at 12 weeks post-eradication. Immediately following eradication, the predominance of Proteobacteria, replacing commensal Firmicutes and Bacteroidetes, did not recover after 12 weeks. Species-level analysis showed that the relative abundances of Klebsiella pneumoniae and Escherichia fergusonii significantly increased in both groups at Week 2. Enterococcus faecium and Enterococcus faecalis significantly increased in the BQT group, with no significant difference observed in the HDDT group. After 12 weeks of treatment, the relative abundance of more species in the HDDT group returned to baseline levels. CONCLUSION: Eradication of H. pylori can lead to an imbalance in gut microbiota. Compared to BQT, the HDDT is a regimen with milder impact on gut microbiota.


Subject(s)
Anti-Bacterial Agents , Bismuth , Drug Therapy, Combination , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bismuth/therapeutic use , Bismuth/administration & dosage , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Helicobacter pylori/physiology , Proton Pump Inhibitors/therapeutic use , Proton Pump Inhibitors/administration & dosage , RNA, Ribosomal, 16S/genetics
19.
Biomater Sci ; 12(11): 2865-2884, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38686665

ABSTRACT

Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.


Subject(s)
Cell Membrane , Nanomedicine , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Animals , Membrane Proteins/chemistry , Membrane Proteins/metabolism
20.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38619429

ABSTRACT

BACKGROUND: Mutations in the gene MTARC1 (mitochondrial amidoxime-reducing component 1) protect carriers from metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. MTARC1 encodes the mARC1 enzyme, which is localized to the mitochondria and has no known MASH-relevant molecular function. Our studies aimed to expand on the published human genetic mARC1 data and to observe the molecular effects of mARC1 modulation in preclinical MASH models. METHODS AND RESULTS: We identified a novel human structural variant deletion in MTARC1, which is associated with various biomarkers of liver health, including alanine aminotransferase levels. Phenome-wide Mendelian Randomization analyses additionally identified novel putatively causal associations between MTARC1 expression, and esophageal varices and cardiorespiratory traits. We observed that protective MTARC1 variants decreased protein accumulation in in vitro overexpression systems and used genetic tools to study mARC1 depletion in relevant human and mouse systems. Hepatocyte mARC1 knockdown in murine MASH models reduced body weight, liver steatosis, oxidative stress, cell death, and fibrogenesis markers. mARC1 siRNA treatment and overexpression modulated lipid accumulation and cell death consistently in primary human hepatocytes, hepatocyte cell lines, and primary human adipocytes. mARC1 depletion affected the accumulation of distinct lipid species and the expression of inflammatory and mitochondrial pathway genes/proteins in both in vitro and in vivo models. CONCLUSIONS: Depleting hepatocyte mARC1 improved metabolic dysfunction-associated steatotic liver disease-related outcomes. Given the functional role of mARC1 in human adipocyte lipid accumulation, systemic targeting of mARC1 should be considered when designing mARC1 therapies. Our data point to plasma lipid biomarkers predictive of mARC1 abundance, such as Ceramide 22:1. We propose future areas of study to describe the precise molecular function of mARC1, including lipid trafficking and subcellular location within or around the mitochondria and endoplasmic reticulum.


Subject(s)
Fatty Liver , Hepatocytes , Animals , Humans , Mice , Adipocytes , Biomarkers , Ceramides , Mendelian Randomization Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...