Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Carbohydr Polym ; 344: 122530, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218552

ABSTRACT

The anti-inflammatory effects of plant polysaccharides are well known. However, the stimulatory effects of polysaccharides under immunosuppressive conditions and their link with the polysaccharide structure is underexplored. In this work, the immune modulatory effects of a garlic polysaccharide (GP) are investigated via in vitro and vivo methods. It is observed that GP enhance the immune response of macrophages (RAW264.7) as indicated by the elevated levels of nitric oxide, TNF-α and IL-6. The observation that GP are able to stimulate the immune response in vitro was then explored with the use of an immunosuppressed mouse model. Surprisingly, GP exhibited dose-dependent up-regulatory impacts on the cyclophosphamide (CTX) suppressed levels of cytokines such as IFN-γ and IL-6 and immunoglobulins (e.g. IgA and IgG). The GP intervention reversed histopathological damage to the small intestine and spleen and increased fecal short-chain fatty acid levels. Moreover, GP modulates the gut microbiota dysbiosis by increasing the abundance of immunogenic bacteria such as g__norank_f__Erysipelotrichaceae, while inhibiting the over-abundance of g_Bacteroides. Functional predictions indicated that gut biomarkers of GP possessed the functions of glycoside hydrolase family 32 (GH32) and ß-fructofuranosidase. It is concluded that GP is a promising immunostimulant for immune-compromised individuals.


Subject(s)
Garlic , Macrophages , Polysaccharides , Animals , Mice , Garlic/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Fructans/pharmacology , Fructans/chemistry , Cyclophosphamide/pharmacology , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Cytokines/metabolism , Gastrointestinal Microbiome/drug effects , Male , Nitric Oxide/metabolism , Mice, Inbred BALB C , Up-Regulation/drug effects
2.
Nanoscale ; 16(35): 16556-16570, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39158027

ABSTRACT

Metal-organic frameworks (MOFs) are a class of porous materials that have been gradually applied in the field of supercapacitors, but they still present major challenges due to their inherent instability and poor conductivity. Herein, in order to solve these problems, Ni-based MOFs and their derivative materials with a particular spherical structure were prepared using a special calcination method. This unique structure not only improves the conductivity of the electrode, but also promotes the transport of electrons and ions during the electrochemical energy storage process. The as-prepared Ni-MOF@M-a4 has an amazing specific capacitance (637.78 F g-1) and a relatively low impedance. The fabricated asymmetric supercapacitor (ASC) consisted of Ni-MOF@M-a4 and activated carbon (AC) as positive and negative electrodes, respectively. The specific capacitance of this ASC was 18.14 F g-1. The maximum energy and power densities of the device reached 1.23 W h kg-1 and 175.00 W kg-1, showing good electrochemical performance. In this work, both an innovative strategy for the rational preparation of MOF arrays with good orientation and a special material preparation method are proposed, which have promising application potential in the field of asymmetric supercapacitors.

3.
Chem Sci ; 15(31): 12189-12199, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118610

ABSTRACT

Potassium-ion batteries (PIBs) are considered potential candidates for large-scale energy storage systems due to the abundant resources of potassium. Among various reported anode materials, bismuth anodes with the advantages of high theoretical specific capacity, low cost, and nontoxicity have attracted widespread attention. However, bismuth anodes experience significant volume changes during the charge/discharge process, leading to unsatisfactory cycling stability and rate performance. In this review, we focus on summarizing the research progress of bismuth anodes in PIBs. We discuss in detail the modification strategies for bismuth anodes in PIBs, including electrolyte optimization, morphology design, and hybridization with carbon materials. In addition, we attempt to propose possible future directions for the development of bismuth anodes in PIBs, aiming to expedite their practical application. It is believed that this review can assist researchers in more efficiently designing high-performance bismuth anode materials for PIBs.

4.
Angew Chem Int Ed Engl ; : e202410494, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007424

ABSTRACT

Anion-reinforced solvation structure favors the formation of inorganic-rich robust electrode-electrolyte interface, which endows fast ion transport and high strength modulus to enable improved electrochemical performance. However, such a unique solvation structure inevitably injures the ionic conductivity of electrolytes and limits the fast-charging performance. Herein, a trade-off in tuning anion-reinforced solvation structure and high ionic conductivity is realized by the entropy-assisted hybrid ester-ether electrolyte. Anion-reinforced solvation sheath with more anions occupying the inner Na+ shell is constructed by introducing the weakly coordinated ether tetrahydrofuran into the commonly used ester-based electrolyte, which merits the accelerated desolvation energy and gradient inorganic-rich electrode-electrolyte interface. The improved ionic conductivity is attributed to the weakly diverse solvation structures induced by entropy effect. These enable the enhanced rate performance and cycling stability of Prussian blue||hard carbon full cells with high electrode mass loading. More importantly, the practical application of the designed electrolyte was further demonstrated by industry-level 18650 cylindrical cells.

5.
Dalton Trans ; 53(32): 13370-13383, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39072426

ABSTRACT

Owing to their high porosity, open metal sites, and huge surface area, metal-organic framework (MOF) materials are commonly employed in iodine adsorption processes. Bimetallic MOFs have drawn a lot of attention since mono-metal MOFs have been unable to keep up with the demand. Bimetallic MOF materials still have drawbacks, including limited adsorption capacity, extended adsorption time, poor stability, and poor selectivity, despite their positive performance in radioactive iodine capture. It has been therefore difficult to develop adsorbents with quick iodine adsorption rates and high iodine adsorption efficiency. This study investigated the adsorption properties of a series of bimetallic MOF-74 materials (Mn-Co-MOF-74, Mn-Zn-MOF-74, and Mn-Ni-MOF-74) for radioactive iodine, as well as their design and synthesis utilizing the reflux approach. It was discovered that the adsorption performance of Mn-Ni-MOF-74 for radioiodine was superior to that of the other two bimetallic MOF-74 materials. Using the bimetallic Mn-Ni-MOF-74 as a precursor, a variety of bimetallic MOF-74 derived carbon compounds (Mn-Ni-CX) were prepared by high-temperature pyrolysis. Simultaneously, the structure of the material and the iodine adsorption characteristics have been thoroughly studied.

6.
Inorg Chem ; 63(15): 7034-7044, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38554089

ABSTRACT

Metal-organic frameworks (MOFs) are self-assembled constitutive precursors and efficient self-sacrificial templates with metal ions/clusters and organic linkers from which multifunctional materials with carbon nanostructures can be derived. In this study, we synthesized a novel Cu-MOF with Cu(II) as the central metal ion through two ligands, N,N'-bis(pyridin-3-yl)terephthalamide (3-bpta) and fumaric acid (H2FA), which was used as a template for derivatizing carbon-based nanostructured materials of Cu and CuxO through doping with different materials (melamine, urea, and TiO2) in a simple and efficient one-step pyrolysis. The Cu/CuxO-1 catalyst possesses both dark-catalyzed degradation activity and photocatalytic reduction activity during water purification due to the hole-transfer ability between Cu+ and Cu2+ and its inhibition of electron-hole complexation. In the absence of light, force, and cocatalyst, it can also effectively remove azo dyes in water and effectively reduce Cr(VI) under the action of visible light; therefore, Cu/CuxO-1 can be used as a new type of bifunctional material for the removal of pollutants in water, which has a broad prospect.

7.
Talanta ; 269: 125496, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38043341

ABSTRACT

The environmental pollution caused by antibiotics, Fe3+ and MnO4- pollutants is becoming increasingly serious. Polyacrylonitrile (PAN) and polymethyl methacrylate (PMMA) were used and decorated with metal-organic frameworks (MOFs) to fabricated three kinds of nanofibrous membranes (NFMs) with different shapes and sizes were prepared by electrospinning technology using in situ growth method and mixed spinning method. The structures and properties of the above three kinds of NFMs were characterized. Among them, PAN@Co/Mn-MOF-74 NFM prepared by in-situ growth method based on PAN was a kind of nano-fluorescent NFM sensor with uniform structure and good fluorescence performance. It showed unique specificity and excellent sensitivity in the detection of ORN, Fe3+ and MnO4-. Compared with previously reported functionalized MOFs, PAN@Co/Mn-MOF-74 NFM has a lower limit of detection (LOD). This study provides a feasible technical route for the preparation of nano-fluorescent NFMs and the targeted detection of trace metal ions and antibiotics.

8.
Inorg Chem ; 62(44): 18116-18127, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37883704

ABSTRACT

Double-walled carbon nanotubes (DWCNTs) make up a unique class of carbon nanotubes (CNTs) that are particularly intriguing for scientific research and are promising candidates for technological applications. A more precise level of control and greater yields can be achieved via catalytic chemical vapor deposition (CCVD), which involves the breakdown of a carbonaceous gas over nanoparticles. The addition of molybdenum to the system can increase the selectivity with regard to the number of walls that exist in the obtained CNTs. As reported herein, we have designed and synthesized a novel Co-Mo-MOF, [Co(3-bpta)1.5(MoO4)]·H2O (where 3-bpta = N,N'-bis(3-pyridyl)terephthalamide), and employed the Co-Mo-MOF as a bimetallic catalyst precursor for the CCVD approach to prepare high-quality DWCNTs. The Co-Mo-MOF was employed after being calcined in N2 and H2 at 1100 °C and decomposing into CoO, CoMoO4, and MoO3. Existing CoMoO4 is unaltered after reduction in H2 at 1100 °C, while CoO and MoO3 are converted into Co0 and MoO2, and more CoMoO4 is created at the expense of Co0 and MoO2 without clearly defining agglomeration. Finally, the interaction between metallic Co particles and C2H4 is what initiates the formation of DWCNTs. In-depth discussion is provided in this paper regarding the mechanism underlying the high selectivity and activity of Co-Mo catalysts in regulating the development and structure of DWCNTs. The DWCNTs also offer excellence performance when they are used as water purification agents and as selective sorbents. This work opens a feasible way to use MOFs as a way to produce MWCNTs, thus blazing a new trail in the field of MOF-derived carbon-based materials.

9.
Dalton Trans ; 52(39): 14220-14234, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37766592

ABSTRACT

In this work, we used Cu(II) ions, a bis-pyridyl-bis-amide ligand [N,N'-bis(4-pyridinecarboxamide)-1,2-cyclohexane (4-bpah)], and an aromatic dicarboxylic acid [1,4-cyclohexanedicarboxylic acid (H2CHDA)] to construct a 1D binuclear Cu-based complex, namely {[Cu3(4-bpah)(CHDA)3(H2O)]·2H2O}n (1). Moreover, we also developed a facile method to synthesize two monometallic/bimetallic-doped materials which were derived from the Cu complex (C-N-1 and C-V-1, which were doped with nitrogen and vanadium, respectively). The as-synthesized derived materials were fully characterized and the iodine sorption/release capabilities were investigated in detail. We performed iodine adsorption experiments on the two monometallic/bimetallic-doped materials and found that C-N-1 and C-V-1 possess highly efficient adsorption activities for the adsorption of iodine from solution. The C-N-1 and C-V-1 complexes exhibited remarkable adsorption capacities of 1141.60 and 1170.70 mg g-1, respectively, for iodine from a cyclohexane solution. Moreover, the dye adsorption properties of C-N-1 and C-V-1 were also investigated in detail. The obtained C-N-1 and C-V-1 exhibit effective dye uptake performances in water solution. The adsorption of Congo red (CR) on a single metal carbon material C-N-1 doped with heteroatoms reached equilibrium within 240 min and reached an adsorption capacity of 1357.00 mg g-1 and the adsorption capacities of C-V-1 for methylene blue (MB), gentian violet (GV), rhodamine B (RhB), and CR at room temperature were found to be 187.60, 190.60 and 108.10 and 1501.00 mg g-1 in 180 min, respectively. By comparison, we found that doping vanadium could play an important role in the adsorption processes. The adsorption capacity of C-V-1 (containing the vanadium in its structure) was relatively higher than that of C-N-1, which indicated that the introduction of non-noble metals may effectively tune the adsorption kinetics activity and the introduction of noble metals can change the surface electronegativity of porous carbon materials, thus leading to significantly improved adsorption capabilities.

10.
Macromol Rapid Commun ; 44(10): e2200982, 2023 May.
Article in English | MEDLINE | ID: mdl-36964974

ABSTRACT

In this work, a novel three nitro-group-bearing monomer 3,6-dinitro-9-(2-trifluoromethyl-4-nitrophenyl)-carbazole (Car-3NO2 -CF3 ) via a CN coupling reaction between 3,6-dinitro-9H-carbazole (Car-2NO2 ) and 2-chloro-5-nitrobenzotrifluoride is synthesized, and obtained single crystal and single crystal analysis data for this compound. The crystal system of Car-3NO2 -CF3 is monoclinic and it has a P 21/c space group. This new monomer (Car-3NO2 -CF3 ) is also utilized to synthesize a novel azo-linked polymer (Azo-Car-CF3 ). The trifluoromethyl group has polar CF bonds, and thus it is an effective functional group for the capture of iodine. Azo-Car-CF3 has great thermal stability with a mass loss of only 10% at 414 °C, as well as good chemical stability as is demonstrated by its low solubility in common organic solvents such as tetrahydrofuran (THF), acetone, methanol, ethanol, and N,N-dimethylformamide (DMF). The specific surface area of Azo-Car-CF3 can reach as high as 335 m2  g-1 . Azo-Car-CF3 exhibits an excellent capacity for iodine adsorption and can reach up to 1198 mg g-1 in cyclohexane solution, and its adsorption capacity for iodine vapor can get to 2100 mg g-1 . In addition, ethanol can be used to trigger the release of the captured iodine to be easily released from Azo-Car-CF3 .


Subject(s)
Iodine , Polymers , Hydrocarbons, Fluorinated/chemistry , Solvents , Ethanol
11.
Polymers (Basel) ; 15(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38231955

ABSTRACT

In this study, we successfully synthesized a novel triacid monomer by means of the thermal cyclization reaction. Subsequently, a series of nitrogen-rich (A3+B2)-type fluorinated hyperbranched poly(amide-imide)s (denoted as PAI-1 and -2, respectively) were prepared by means of a one-pot method using this triacid monomer and a diamine monomer with a triphenylamine-carbazole unit as precursors. The degree of support of the prepared hyperbranched PAIs was found to be about 60% via 1H NMR calculations. Through X-ray photoelectron spectroscopy (XPS), it was found that the binding energies of C-N (398.4 eV) and -NH (399.7 eV) became lower under a current, while the binding energy peak of N+ appeared at 402.9 eV. In addition, the PAIs have good solubility and thermal stability (Tgs: 256-261 °C, T10%: 564-608 °C). Cyclic voltammetry (CV) analysis shows that the hyperbranched PAI films have good redox properties, and a range of values for the HOMO (4.83 to 4.85 eV) versus LUMO (1.85 to 1.97 eV) energy levels are calculated. The PAI films have excellent electrochromic properties: PAI-1 on coloration efficiency (CE) and transmittance change (ΔT, 852 nm) are 257 cm2/C and 62%, respectively, and have long-lasting redox properties (100 cycles). In addition, we conduct iodine adsorption tests using the structural features of PAIs with electron-drawing units, and the results show that PAI-1 had a high adsorption capacity for iodine (633 mg/g).

12.
Dalton Trans ; 51(45): 17319-17327, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36321518

ABSTRACT

Photocatalytic degradation of dyes is an extremely difficult but very important issue in the field of environmental protection. Two coordination polymers (CPs) [Cu(3-bpah)(HD)]n (1) and [Cu(3-dpye)0.5(HD)]n (2) [3-bpah = N,N'-bis(3-pyridinecarboxamide)-1,2-cyclohexane, 3-dpye = N,N'-bis(3-pyridinecarboxamide)-1,2-ethane, H2HD = hexanedioic acid] were successfully synthesized by tuning the auxiliary ligands under hydrothermal conditions. CPs 1 and 2 exhibited different compositions because of the different N-donor ligands, and were used as precursors for the preparation of metal oxide heterojunctions. Doping foreign elements into intrinsic CP-based materials is an effective way to enhance their photocatalytic activity, and thus we designed a facile method to synthesize a series of carbon-coated metal oxide heterojunctions which were derived from the two Cu-based CPs (Cu@V-1, Cu@V-2, Cu@Mo-1, Cu@Mo-2, Cu@W-1 and Cu@W-2) in this work for the first time. Benefiting from the formation of a carbon shell and regulation of the electronic structure through doping molybdenum and generating the Mo2C phase, the photocatalytic degradation rates were 94.84% for MB, 76.02% for RhB, 52.29% for MO, and 86.18% for CR after 4 h.

13.
RSC Adv ; 12(15): 9363-9372, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35424883

ABSTRACT

A 2D Cu@TiO2 composite with a porous and crystalline structure was successfully synthesized via one-step and low-temperature calcination of a 1D Cu-based coordination polymer (Cu-CP), namely [Cu2(3-dpha)(1,4-NDC)2(H2O)3] n (3-dpha = N,N'-bis(3-pyridyl)adipamide and 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid). Moreover, the Cu@TiO2 membrane was fabricated by a simple filtration of the as-grown Cu@TiO2 composite. Compared with the benchmark TiO2 photocatalyst, the Cu@TiO2 composite material with high specific surface area and reduced photogenerated electron-hole ratio exhibited good photodegradation activity and durability for gentian violet (GV), which could be attributed to the combined effect of co-doping of Cu and TiO2 structure. Furthermore, the ˙OH and ˙O2 - radicals were predicted to dominate the photocatalytic process. Therefore, this new efficient photocatalyst is a promising candidate for efficient and selective photodegradation of organic pollutants.

14.
Dalton Trans ; 50(48): 18173-18185, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34859813

ABSTRACT

Metal-organic frameworks (MOFs) have recently emerged as a type of uniformly and periodically atom-distributed precursor and efficient self-sacrificial template to fabricate hierarchical porous-carbon-related nanostructured functional materials. In this work, we used Cu(II) ions and aromatic dicarboxylic acid to construct [Cu3(4,4'-oba)2(µ2-OH)2(H2O)2]n (4,4'-H2oba = 4,4'-oxybisbenzoic acid) as a precursor for the preparation of carbon nanostructures. Doping foreign elements into intrinsic MOF-based nanomaterials is an effective way to enhance the adsorption property and photocatalytic activity; thus, we designed a facile method to synthesize a vanadium-doped mixture of Cu2O and Cu nanoparticles encapsulated in a Cu-MOF-derived carbon nanostructure (C-V-1) in this work for the first time. Benefiting from the protection of the carbon shell and regulation of the electronic structure by doping vanadium and phase-mixing Cu2O and Cu, the adsorption capacities of C-V-1 for MB, RhB, MO, CR and GV at room temperature are 174.13, 147.06, 179.92, 275.90 and 611.81 mg g-1 in 240 min, respectively, while the photocatalytic degradation rates are 88.14% for MB, 79.80% for RhB, 71.31% for MO, and 71.19% for CR after 4 h. In addition, the degradation rate is larger than 99.01% for GV after only 30 min of UV irradiation. This strategy of using a diverse MOF as a structural and compositional material to create a multifunctional composite/hybrid may expand the opportunities to explore highly efficient, fast and robust adsorbents and photocatalysts for water treatment.

15.
Dalton Trans ; 50(42): 15176-15186, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34622902

ABSTRACT

A novel and unusual 3D luminescent coordination polymer (CP) [Zn2(3-bpah)(bpta)(H2O)]·3H2O (1), where 3-bpah denotes N,N'-bis(3-pyridinecarboxamide)-1,2-cyclohexane and H4bpta denotes 2,2',4,4'-biphenyltetracarboxylic acid, was successfully synthesized via hydrothermal methods from Zn(II) ions and 3-bpah and bpta ligands. The structure of this CP was investigated via powder X-ray diffraction (PXRD) analysis along with single crystal X-ray diffraction. Notably, 1 exhibits remarkable fluorescence behavior and stability over a wide pH range and in various pure organic solvents. More importantly, 1 can become an outstanding candidate for the selective and sensitive sensing of Fe3+, Mg2+, Cr2O72-, MnO4-, nitrobenzene (NB) and nitromethane (NM), at an extremely low detection limit. The changes in the fluorescence intensity exhibited by these six analytes in the presence of 1 over a wide pH range indicate that this polymer can be an excellent luminescent sensor. To the best of our knowledge, 1 is a rare example of a CP-based multiresponsive fluorescent sensor for metal cations, anions, and toxic organic solvents.

16.
Dalton Trans ; 50(30): 10549-10560, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34263898

ABSTRACT

To research the effect of structural diversity on citrate-based coordination polymers (CPs), citric acid (H4cit) was selected to combine with Cu(ii) under hydrothermal conditions. A new CP [Cu2(cit)(H2O)2] (1) was synthesized and structurally characterized. The title complex shows a 3D 2,4,6-connected topology with the point symbol of {43·63}{44·66·85}{4}. Inspired by the decomposition and functional molybdenum component, 1 was used as a catalyst precursor to synthesize a carbon-based material (C-1) and a C@Mo material (C-Mo-1) by the chemical vapor deposition (CVD) method and characterized in detail. The selective removal of a contaminant (Congo red) by complex 1, C-1 and C-Mo-1 in the aqueous phase was also comparatively investigated.

17.
RSC Adv ; 11(52): 33102-33113, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-35493578

ABSTRACT

The synthesis of multi-walled carbon nanotubes (MWCNTs) was carried out over different Ni-loaded metallic oxide catalyst nanoparticles and under different reduction times to control the outside diameter of the nanotubes. Moreover, high-purity, free-standing membranes were fabricated by a simple filtration of the as-grown MWCNTs. Furthermore, the dye-adsorption properties of the nanotubes depended on the diameter of the carbon nanotubes (CNTs). The adsorption isotherms and kinetics of anionic dyes could be described by Freundlich and pseudo-second-order models, respectively. Thermodynamic studies suggested that the adsorption processes were spontaneous and exothermic. This work provides new insights into the synthesis and application of MWCNTs with the selective adsorption properties of carbon-based materials for the removal of organic dyes.

18.
J Agric Food Chem ; 68(44): 12295-12309, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33095019

ABSTRACT

Garlic polysaccharides are great potential agents because of their anti-inflammation, antioxidation, and immunomodulation properties. However, few studies have reported their anti-inflammatory effects on improving the colon system and corresponding intestinal microbiota. Herein, a water-soluble garlic polysaccharide (WSGP) was extracted from Jinxiang garlic to evaluate its effects on ameliorating dextran sulfate sodium (DSS)-induced colitis in a mouse model. The results showed that (1) after administration of the WSGP (200 or 400 mg/kg/day), the feed intake, body weight, and colon length of colitic mice were increased, while the disease activity index and the histological score of colitic mice were decreased; (2) the WSGP reduced the colonic tissue damage and inhibited the expression of inflammatory factors (interleukin 6, interleukin 1 beta , and tumor necrosis factor alpha); and (3) the WSGP enhanced the production of short-chain fatty acids and improved the composition of intestinal microbiota. The key microorganisms, including Muribaculaceae, Lachnospiraceae, Lachnospiraceae_NK4A136_group, Mucispirillum, Helicobacter, Ruminococcus_1, and Ruminiclostridium_5, were identified to be associated with inflammatory bowel diseases. Taken together, this study proved that WSGP supplementation could alleviate DSS-induced colitis by improving mucosal barriers, blocking proinflammatory cytokines, and modulating gut microbiota.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Colitis/drug therapy , Colitis/microbiology , Garlic/chemistry , Gastrointestinal Microbiome/drug effects , Plant Extracts/administration & dosage , Polysaccharides/administration & dosage , Animals , Anti-Inflammatory Agents/chemistry , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Colitis/chemically induced , Colitis/immunology , Dextran Sulfate/adverse effects , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Polysaccharides/chemistry
19.
ACS Macro Lett ; 7(6): 751-756, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-35632959

ABSTRACT

We demonstrated the synthesis and directed self-assembly (DSA) of poly(styrene-b-(lactic acid-alt-glycolic acid)) (PS-b-PLGA). Lamellae-forming PS-b-PLGAs with a range of molecular weights were synthesized by ring-opening polymerization (ROP) of LGA (d,l-3-methyl-1,4-dioxane-2,5-dione) from hydroxy-terminated polystyrene (PS-OH) with stannous octoate as the catalyst and characterized by 1H NMR spectroscopy, GPC, DSC, TGA, SAXS, and rheometry. The order-disorder transition temperatures (TODT) of four PS-b-PLGA block copolymers were determined by temperature sweep measurements and verified by variable-temperature SAXS, which were used to determine the temperature dependence of χ. The χ value of PS-b-PLGA is twice as large as that of poly(styrene-b-racemic lactide) (PS-b-PDLLA) at 150 °C, while the surface energies (γ) of PS and PLGA are nearly equal. Thin films of PS-b-PLGA were successfully directed to assemble on stripe chemical patterns with a range of pattern periods (LS) upon thermal annealing. SEM analysis of the assembled films revealed that long-range ordered perpendicularly oriented lamellae were registered on chemical patterns with 2× density multiplication. These results qualify PS-b-PLGA as an attractive candidate for next-generation lithography with sub-10 nm resolution.

20.
Biomed Res Int ; 2015: 150603, 2015.
Article in English | MEDLINE | ID: mdl-26495283

ABSTRACT

The aim of this study was to investigate the structural characteristics and antioxidant activities of soy protein isolate- (SPI-) dextran conjugates obtained by TiO2 photocatalysis treatment. Results revealed that the UV-vis absorption and the fluorescence intensity increased as the photocatalytic power increased (P < 0.05). Higher photocatalytic power could promote the extent of glycation and the formation of high molecular weight SPI-dextran conjugates, which were evidenced by free amino group content and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The Fourier transform infrared (FT-IR) spectra suggested that the amide I, II, and III bands of SPI were altered by the glycation induced by TiO2 photocatalysis. Moreover, significant changes of secondary structure occurred in SPI-dextran conjugates. The α-helix, ß-sheet, ß-turns, and random coil were changed from approximately 10.6%, 37.9%, 12.9%, and 38.6% to 3.8%, 10.4%, 17.7%, and 68.8%, respectively, after treatment at photocatalytic power of 1000 W. In addition, SPI-dextran conjugates obtained by TiO2 photocatalysis treatment exhibited high hydroxyl radical scavenging activity and possessed increased reducing power. All data indicated that TiO2 photocatalysis was an efficient method for promoting protein-polysaccharide copolymerisation.


Subject(s)
Antioxidants/chemical synthesis , Dextrans/chemistry , Nanoconjugates/chemistry , Soybean Proteins/chemistry , Titanium/chemistry , Antioxidants/analysis , Catalysis , Dextrans/radiation effects , Light , Nanoconjugates/radiation effects , Photochemistry/methods , Soybean Proteins/radiation effects , Titanium/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL