Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Craniofac Surg ; 31(1): e6-e10, 2020.
Article in English | MEDLINE | ID: mdl-31449208

ABSTRACT

The effect of maxillary skeletal expansion (MSE) on upper airway in adolescent patients is not clear. The purpose of this study was to determine the upper airway airflow with MSE treatment using computational fluid dynamics analysis. Three-dimensional upper airway finite element models fabricated from cone beam computed tomography images were obtained before and after treatment in an adolescent patient with maxillary constriction. Turbulent analyses were applied. The nasal cavity (NC) was divided into 6 planes along the y-axis and the pharynx was divided into 7 planes in the z-axis. Changes in cross-sectional area, airflow velocity, pressure, and total resistance at maximum expiration and maximum inspiration were determined at each plane after MSE treatment. The greatest increase in area occurred in the oropharynx which was around 40.65%. The average increase in area was 7.42% in the NC and 22.04% in the pharynx. The middle part of pharynx showed the greatest increase of 212.81 mm and 217.99 mm or 36.58% and 40.66%, respectively. During both inspiration and expiration, airflow pressure decreased in both the NC and pharynx, which ranged from -11.34% to -23.68%. In the NC, the average velocity decrease was -0.18 m/s at maximum expiration (ME) and -0.13 m/s at maximum inspiration (MI). In the pharynx, the average velocity decrease was -0.07 m/s for both ME and MI. These results suggest that treatment of maxillary constriction using MSE appliance may show positive effects in improvement of upper airway cross-sectional areas and reduction of upper airway resistance and velocity.


Subject(s)
Exhalation , Palatal Expansion Technique , Adolescent , Cone-Beam Computed Tomography , Female , Humans , Hydrodynamics , Nasal Cavity , Pharynx
2.
J Occup Environ Hyg ; 14(11): D173-D178, 2017 11.
Article in English | MEDLINE | ID: mdl-28825873

ABSTRACT

This article presents an intelligent Filtering Facepiece Respirator (FFR) with a self-adjustable ventilation fan for improved comfort. The ventilation fan with an intelligent control aims to reduce temperature, relative humidity, and CO2 concentrations inside the facepiece. Compared with a previous version of the FFR, the advantage of this new FFR is the intelligent control of the fan's rotation speed based on the change in temperature and relative humidity in the FFR dead space. The design of the control system utilizes an 8-bit, ultra-low power STC15W404AS microcontroller (HongJin technology, Shenzhen, China), and adopts a high-precision AM2320 device (AoSong electronic, Guangzhou, China) as temperature and relative humidity sensor so that control of temperature and relative humidity is realized in real time within the FFR dead space. The ventilation fan is intelligently driven and runs on a rechargeable lithium battery with a power-save mode that provides a correspondingly longer operational time. Meanwhile, the design is simplistic. Two experiments were performed to determine the best location to place the fan.


Subject(s)
Equipment Design , Respiratory Protective Devices , Ventilation/instrumentation , Carbon Dioxide , Humans , Humidity , Temperature
3.
PLoS One ; 11(7): e0159848, 2016.
Article in English | MEDLINE | ID: mdl-27454123

ABSTRACT

This article presents an improved Filtering Facepiece Respirator (FFR) designed to increase the comfort of wearers during low-moderate work. The improved FFR aims to lower the deadspace temperature and CO2 level by an active ventilation fan. The reversing modeling is used to build the 3D geometric model of this FFR; the Computational Fluid Dynamics (CFD) simulation is then introduced to investigate the flow field. Based on the simulation result, the ventilation fan of the improved FFR can fit the flow field well when placed in the proper blowing orientation; streamlines from this fan show a cup-shape distribution and are perfectly matched to the shape of the FFR and human face when the fan blowing inward. In the deadspace of the improved FFR, the CO2 volume fraction is controlled by the optimized flow field. In addition, an experimental prototype of the improved FFR has been tested to validate the simulation. A wireless temperature sensor is used to detect the temperature variation inside the prototype FFR, deadspace temperature is lowered by 2 K compared to the normal FFR without a fan. An infrared camera (IRC) method is used to elucidate the temperature distribution on the prototype FFR's outside surface and the wearer's face, surface temperature is lowered notably. Both inside and outside temperature results from the simulation are in agreement with experimental results. Therefore, adding an inward-blowing fan on the outer surface of an N95 FFR is a feasible approach to reducing the deadspace CO2 concentration and improve temperature comfort.


Subject(s)
Equipment Design , Models, Theoretical , Respiratory Protective Devices , Ventilation , Humans , Temperature
4.
J Occup Environ Hyg ; 13(5): 372-82, 2016.
Article in English | MEDLINE | ID: mdl-26653154

ABSTRACT

This article presents a reverse modeling of the headform when wearing a filtering facepiece respirator (FFR) and a computational fluid dynamics (CFD) simulation based on the modeling. The whole model containing the upper respiratory airway, headform, and FFR was directly recorded by computed tomography (CT) scanning, and a medical contrast medium was used to make the FFR "visible." The FFR was normally worn by the subject during CT scanning so that the actual deformation of both the FFR and the face muscles during contact can be objectively conserved. The reverse modeling approach was introduced to rebuild the geometric model and convert it into a CFD solvable model. In this model, we conducted a transient numerical simulation of air flow containing carbon dioxide, thermal dynamics, and pressure and wall shear stress distribution in the respiratory system taking into consideration an individual wearing a FFR. The breathing cycle was described as a time-dependent profile of the air velocity through the respiratory airway. The result shows that wearing the N95 FFR results in CO2 accumulation, an increase in temperature and pressure elevation inside the FFR cavity. The volume fraction of CO2 reaches 1.2% after 7 breathing cycles and then is maintained at 3.04% on average. The wearers re-inhale excessive CO2 in every breathing cycle from the FFR cavity. The air temperature in the FFR cavity increases rapidly at first and then stays close to the exhaled temperature. Compared to not wearing an FFR, wearers have to increase approximately 90 Pa more pressure to keep the same breathing flow rate of 30.54 L/min after wearing an FFR. The nasal vestibule bears more wall shear stress than any other area in the airway.


Subject(s)
Carbon Dioxide/analysis , Respiratory Physiological Phenomena , Respiratory Protective Devices , Computer Simulation , Equipment Design , Humans , Hydrodynamics , Models, Theoretical , Pressure , Temperature
5.
J Occup Environ Hyg ; 13(3): D50-60, 2016.
Article in English | MEDLINE | ID: mdl-26558322

ABSTRACT

This article presents a computational study on contact characteristics of contact pressure and resultant deformation between an N95 filtering facepiece respirator and a newly developed digital headform. The geometry of the headform model is obtained based on computed tomography scanning of a volunteer. The segmentation and reconstruction of the headform model is performed by Mimics v16.0 (Materialise, Leuven, Belgium), which is a medical image processing software. The respirator model is obtained by scanning the surface of a 3M 8210 N95 respirator using a 3D digitizer and then the model is transformed by Geomagic Studio v12.0 (3D system, Rock Hill, SC), a reverse engineering software. The headform model contains a soft tissue layer, a skull layer, and a separate nose. The respirator model contains two layers (an inner face sealing layer and an outer layer) and a nose clip. Both the headform and respirator are modeled as solid elements and are deformable. The commercial software, LS-DYNA (LSTC, Livermore, CA), is used to simulate the contact between the respirator and headform. Contact pressures and resultant deformation of the headform are investigated. Effects of respirator stiffness on contact characteristics are also studied. A Matlab (MathWorks, Natick, MA) program is developed to calculate local gaps between the headform and respirator in the stable wearing state.


Subject(s)
Computer Simulation , Equipment Design , Respiratory Protective Devices , Finite Element Analysis , Head , Humans , Materials Testing/methods , Models, Anatomic , Occupational Exposure/prevention & control , Pressure , Stress, Mechanical , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...