Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.029
Filter
1.
J Sci Food Agric ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822620

ABSTRACT

BACKGROUND: Java tea is widely consumed and has multiple health effects. This study established a steam explosion (SE) pretreatment method to prepare Java tea-leaf powders. The physicochemical, functional properties, phenolic extraction, and antioxidant activity of Java tea-leaf powders produced by simple and SE-assisted milling methods were investigated. RESULTS: In comparison with simple milling, SE pretreatment broke the cell wall effectively and reduced the particle size of Java tea-leaf powders. Steam explosion-treated powders showed higher values for sensory signals, bulk and tap density, and for the water solubility index. After SE treatment, the adsorption capacities to glucose, soybean oil, and cholesterol of leaf powders were increased by up to 55, 95, and 80% respectively. The extracts from SE-treated powders also showed higher total polyphenol content and antioxidant activity. CONCLUSION: Steam explosion treatment is helpful for the improvement of functional properties and antioxidant activity, which can benefit the development and application of Java tea-leaf powders. © 2024 Society of Chemical Industry.

2.
Article in English | MEDLINE | ID: mdl-38830131

ABSTRACT

Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) is a promising solid-state electrolyte (SSE) because of its fast ionic conduction and notable chemical/electrochemical stability toward the lithium (Li) metal. However, poor interface wettability and large interface resistance between LLZTO and Li anode greatly restrict its practical applications. In this work, we develop an in situ chemical conversion strategy to construct a highly conductive Li2S@C layer on the surface of LLZTO, enabling improved interfacial wettability between LLZTO and the Li anode. The Li/Li2S@C-LLZTO-Li2S@C/Li symmetric cell has a low interface impedance of 78.5 Ω cm2, much lower than the 970 Ω cm2 of a Li/LLZTO/Li cell. Moreover, the Li/Li2S@C-LLZTO-Li2S@C/Li cell exhibits a high critical current density of 1.4 mA cm-2 and an ultralong stability of 3000 h at 0.1 mA cm-2. When used in a LiFePO4 battery, the Li/Li2S@C-LLZTO/LiFePO4 battery exhibits a high initial discharge capacity of 150.8 mA h g-1 at 0.2 C without lithium storage capacity attenuation during 200 cycles. This work provides a novel and feasible strategy to address interface issues of SSEs and achieve lithium-dendrite-free solid-state batteries.

3.
J Periodontal Res ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699861

ABSTRACT

OBJECTIVE: To investigate whether visceral adipose tissue-derived serine protease inhibitor (vaspin) can alleviate the inhibitory effect of high-glucose (HG) culture on the proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) and to preliminarily explore the underlying mechanisms. BACKGROUND: High glucose produces damage to the regeneration of periodontal tissue of PDLSCs. The expression level of vaspin in periodontal tissue is high in periodontitis patients and effectively reduced after initial therapy of periodontal diseases. However, the effect of vaspin on PDLSCs remains unknown. MATERIALS AND METHODS: PDLSCs were cultured in media augmented with 5.5 or 25.0 mM concentrations of glucose to elucidate the impact and mechanism of vaspin on PDLSCs under high glucose in vitro. Proliferation was measured by Cell Counting Kit-8 (CCK8) assay. Osteogenesis of PDLSCs was assessed by alkaline phosphatase (ALP) staining, ALP activity, and Alizarin Red staining. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) were used to investigate the osteo-specific markers. Then, the molecular impact of vaspin in the presence/absence of HG on PDLSCs physiology was determined with TGF-ß1/Smad signaling pathway as the main focus. RESULTS: It was revealed that the proliferation and osteogenic differentiation (OD) of PDLSCs under HG was reduced, and by adding vaspin the anti-osteogenic impact of HG was relieved. Moreover, vaspin enhanced TGF-ß1/Smad signaling pathway activity. Pretreatment with TGF-ß1 inhibitor blocked vaspin-triggered TGF-ß1/Smad signal activation and minimized the vaspin-induced protective effect against HG-inhibited growth and OD. CONCLUSIONS: In summary, vaspin observably reduces HG-mediated inhibition of PDLSCs OD by modulating the TGF-ß1/Smad signaling pathway. Vaspin may be a potential therapeutic for periodontal tissue regeneration in diabetic patients.

4.
Front Pharmacol ; 15: 1388206, 2024.
Article in English | MEDLINE | ID: mdl-38720774

ABSTRACT

Panax ginseng C. A. Meyer is a dual-purpose plant for medicine and food, its polysaccharide is considered as an immune enhancer. Four polysaccharides, WGP-20-F, WGP-40-F, WGP-60-F and WGP-80-F were obtained from ginseng via water extraction and gradient ethanol precipitation with different molecular weights (Mw) of 1.720 × 106, 1.434 × 106, 4.225 × 104 and 1.520 × 104 Da, respectively. WGP-20-F and WGP-40-F which with higher Mw and a triple-helix structure are glucans composed of 4-ɑ-Glcp, do not show remarkable immunoregulatory effects. WGP-60-F and WGP-80-F are heteropolysaccharides mainly composed of 4-ɑ-Glcp and also contain t-ɑ-Araf, 5-ɑ-Araf and 3,5-ɑ-Araf. They are spherical branched conformations without a triple-helix structure and can effectively increase the index of immune organs, lymphocyte proliferation, activate macrophages to regulate the immune system in mice and further enhance immune functions by improving delayed-type hypersensitivity reaction and antibody response. These results indicated that WGP-60-F and WGP-80-F could be used as potential immune enhancers, and gradient ethanol precipitation can be applied for the preparation of ginseng bioactive polysaccharide.

5.
Parkinsonism Relat Disord ; 124: 106985, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38718478

ABSTRACT

BACKGROUND: Essential tremor (ET) and dystonic tremor (DT) are the two most common tremor disorders, and misdiagnoses are very common due to similar tremor symptoms. In this study, we explore the structural network mechanisms of ET and DT using brain grey matter (GM) morphological networks and combine those with machine learning models. METHODS: 3D-T1 structural images of 75 ET patients, 71 DT patients, and 79 healthy controls (HCs) were acquired. We used voxel-based morphometry to obtain GM images and constructed GM morphological networks based on the Kullback-Leibler divergence-based similarity (KLS) method. We used the GM volumes, morphological relations, and global topological properties of GM-KLS morphological networks as input features. We employed three classifiers to perform the classification tasks. Moreover, we conducted correlation analysis between discriminative features and clinical characteristics. RESULTS: 16 morphological relations features and 1 global topological metric were identified as the discriminative features, and mainly involved the cerebello-thalamo-cortical circuits and the basal ganglia area. The Random Forest (RF) classifier achieved the best classification performance in the three-classification task, achieving a mean accuracy (mACC) of 78.7%, and was subsequently used for binary classification tasks. Specifically, the RF classifier demonstrated strong classification performance in distinguishing ET vs. HCs, ET vs. DT, and DT vs. HCs, with mACCs of 83.0 %, 95.2 %, and 89.3 %, respectively. Correlation analysis demonstrated that four discriminative features were significantly associated with the clinical characteristics. CONCLUSION: This study offers new insights into the structural network mechanisms of ET and DT. It demonstrates the effectiveness of combining GM-KLS morphological networks with machine learning models in distinguishing between ET, DT, and HCs.

6.
Phytother Res ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729776

ABSTRACT

White adipose tissue accumulation and inflammation contribute to obesity by inducing insulin resistance. Herein, we aimed to screen the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for the treatment of insulin resistance and explore the potential synergistic mechanisms. Enzyme-linked immunosorbent assay and quantitative PCR were used to detect expression levels of inflammatory genes in vitro and in vivo. Western blotting and immunohistochemistry were performed to detect protein levels of the insulin signaling pathway and macrophage markers. The effects on obesity-induced insulin resistance were verified using a diet-induced obesity (DIO) mouse model. Interactions between macrophage and adipocyte were assessed using a cellular supernatant transfer assay. Berberine (BBR) and isoliquiritigenin (ISL) alleviated mRNA levels and secretion of inflammatory genes in vitro and in vivo. Furthermore, BBR acted synergistically with ISL to ameliorate obesity and dyslipidemia in DIO mice. Meanwhile, the combination treatment significantly improved glucose intolerance and insulin resistance and decreased M1-macrophage accumulation and infiltration in the adipose tissue. Mechanistically, co-treatment with BBR and ISL upregulated the protein expression of the IRS1-PI3K-Akt insulin signaling pathway, enhanced glucose uptake in adipocyte, and suppressed the interaction between macrophage and adipocyte. BBR and ISL were identified as the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for treating insulin resistance. The synergistic combination of BBR with ISL can be a promising and effective strategy for improving obesity-induced adipose inflammation and insulin resistance.

7.
Water Res ; 257: 121754, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38762929

ABSTRACT

Algal-bacterial granular sludge (ABGS) system is promising in wastewater treatment for its potential in energy-neutrality and carbon-neutrality. However, traditional cultivation of ABGS poses significant challenges attributable to its long start-up period and high energy consumption. Extracellular polymeric substances (EPS), which could be stimulated as a self-defense strategy in cells under toxic contaminants stress, has been considered to contribute to the ABGS granulation process. In this study, photogranulation of ABGS by EPS regulation in response to varying loading rates of N-Methylpyrrolidone (NMP) was investigated for the first time. The results indicated the formation of ABGS with a maximum average diameter of ∼3.3 mm and an exceptionally low SVI5 value of 67 ± 2 mL g-1 under an NMP loading rate of 125 mg L-1 d-1, thereby demonstrating outstanding settleability. Besides, almost complete removal of 300 mg L-1 NMP could be achieved at hydraulic retention time of 48 h, accompanied by chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies higher than 90 % and 70 %, respectively. Moreover, possible degradation pathway and metabolism mechanism in the ABGS system for enhanced removal of NMP and nitrogen were proposed. In this ABGS system, the mycelium with network structure constituted by filamentous microorganisms was a prerequisite for photogranulation, instead of necessarily leading to granulation. Stress of 100-150 mg L-1 d-1 NMP loading rate stimulated tightly-bound EPS (TB-EPS) variation, resulting in rapid photogranulation. The crucial role of TB-EPS was revealed with the involved mechanisms being clarified. This study provides a novel insight into ABGS development based on the TB-EPS regulation by NMP, which is significant for achieving the manipulation of photogranules.


Subject(s)
Extracellular Polymeric Substance Matrix , Pyrrolidinones , Sewage , Sewage/microbiology , Extracellular Polymeric Substance Matrix/metabolism , Pyrrolidinones/metabolism , Waste Disposal, Fluid , Nitrogen , Bacteria/metabolism , Biological Oxygen Demand Analysis , Wastewater/chemistry
8.
Light Sci Appl ; 13(1): 111, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734686

ABSTRACT

Quantum-confined CsPbBr3 perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr3 nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsxO monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr3 NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.

9.
Chem Sci ; 15(19): 7144-7149, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756800

ABSTRACT

Garnet-type solid-state Li metal batteries (SSLMBs) are viewed as hopeful next-generation batteries due to their high energy density and safety. However, the major obstacle to the development of garnet-type SSLMBs is the lithiophobicity of Li6.75La3Zr1.75Ta0.25O12 (LLZTO), resulting in a large interfacial impedance. Herein, a LiI/ZnLix mixed ion/electron conductive buffer layer is constructed at the interface by an in situ reaction of molten Li metal with ZnI2 film. This mixed buffer layer ensures close contact between the Li metal and garnet, significantly reducing interfacial impedance. As a result, the Li symmetrical cell with the LiI/ZnLix buffer layer shows an interface impedance of 10.3 Ω cm2, much lower than that of the cell with bare LLZTO (1173.4 Ω cm2). The critical current density (CCD) is up to 2.3 mA cm-2, and the symmetric cells present a long cycle life of 2000 h at 0.1 mA cm-2 and 800 h at 1.0 mA cm-2. In addition, the full cells assembled with the LiFePO4 cathode show a capacity of 143.9 mA h g-1 after 200 cycles at 0.5C with a low-capacity decay of 0.021% per cycle. This work reveals a simple, feasible, and practical interface modification strategy for solid-state Li metal batteries.

10.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746101

ABSTRACT

RNA sequencing (RNA-seq) has become a cornerstone in transcriptomics, offering detailed insights into gene expression across diverse biological conditions and sample types. However, RNA-seq data often suffer from batch effects, which are systematic non-biological differences that compromise data reliability and obscure true biological variation. To address these challenges, we introduce ComBat-ref, a refined method of batch effect correction that enhances the statistical power and reliability of differential expression analysis in RNA-seq data. Building on the foundations of ComBat-seq, ComBat-ref employs a negative binomial model to adjust count data but innovates by using a pooled dispersion parameter for entire batches and preserving count data for the reference batch. Our method demonstrated superior performance in both simulated environments and real datasets, such as the growth factor receptor network (GFRN) data and NASA GeneLab transcriptomic datasets, significantly improving sensitivity and specificity over existing methods. By effectively mitigating batch effects while maintaining high detection power, ComBat-ref proves to be a robust tool for enhancing the accuracy and interpretability of RNA-seq data analyses.

11.
Cell Metab ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38772364

ABSTRACT

Circadian disruption predicts poor cancer prognosis, yet how circadian disruption is sensed in sleep-deficiency (SD)-enhanced tumorigenesis remains obscure. Here, we show fatty acid oxidation (FAO) as a circadian sensor relaying from clock disruption to oncogenic metabolic signal in SD-enhanced lung tumorigenesis. Both unbiased transcriptomic and metabolomic analyses reveal that FAO senses SD-induced circadian disruption, as illustrated by continuously increased palmitoyl-coenzyme A (PA-CoA) catalyzed by long-chain fatty acyl-CoA synthetase 1 (ACSL1). Mechanistically, SD-dysregulated CLOCK hypertransactivates ACSL1 to produce PA-CoA, which facilitates CLOCK-Cys194 S-palmitoylation in a ZDHHC5-dependent manner. This positive transcription-palmitoylation feedback loop prevents ubiquitin-proteasomal degradation of CLOCK, causing FAO-sensed circadian disruption to maintain SD-enhanced cancer stemness. Intriguingly, timed ß-endorphin resets rhythmic Clock and Acsl1 expression to alleviate SD-enhanced tumorigenesis. Sleep quality and serum ß-endorphin are negatively associated with both cancer development and CLOCK/ACSL1 expression in patients with cancer, suggesting dawn-supplemented ß-endorphin as a potential chronotherapeutic strategy for SD-related cancer.

12.
J Colloid Interface Sci ; 671: 1-14, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788420

ABSTRACT

The widespread contamination of hexavalent chromium (Cr(VI)), pharmaceuticals and personal care products (PPCPs), and dyes is a growing concern. necessitating the development of convenient and effective technologies for their removal. Copper(I) phenylacetylide (PhC2Cu) has emerged as a promising photocatalyst for environmental remediation. In this study, we introduced a functional Cu-O bond into PhC2Cu (referred to as OrPhC2Cu) by creatively converting the adsorbed oxygen on the surface of PhC2Cu into a Cu-O bond to enhance the efficiency of Cr(VI) photoreduction, PPCPs photodegradation, and dyes photodegradation through a facile vacuum activating method. The incorporation of the Cu-O bond optimized the electron structure of OrPhC2Cu, facilitating exciton dissociation and charge transfer. The exciton dissociation behavior and charge transfer mechanism were systematically investigated for the first time in the OrPhC2Cu system by photoelectrochemical tests, fluorescence and phosphorescence (PH) techniques, and density functional theory (DFT) calculations. Remarkably, the enhanced visible-light response of OrPhC2Cu improved photon utilization and significantly promoted the generation of reactive species (RSs), leading to the highly efficient Cr(VI) photoreduction (98.52% within 25 min) and sulfamethazine photodegradation (94.65% within 60 min), with 3.91 and 5.23 times higher activity compared to PhC2Cu. Additionally, the photocatalytic efficiency of OrPhC2Cu in degrading anionic dyes surpassed that of cationic dyes. The performance of the OrPhC2Cu system in treating electroplating effluent or natural water bodies suggests its potential for practical applications.

13.
J Colloid Interface Sci ; 671: 67-77, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788425

ABSTRACT

With the wide application of electromagnetic waves in national defense, communication, navigation and home appliances, the electromagnetic pollution problem is becoming more and more prominent. Therefore, high-performance, and low-density composite wave-absorbing materials have attracted much attention. In this paper, three-dimensional (3D) network structures of flower-like 1T/2H Molybdenum disulfide nanosheets anchored to carbon fibers (1T/2H MoS2/CNFs) were prepared by electrostatic spinning technique and calcination process. The morphology and electromagnetic wave absorption properties were tuned by changing the content of flower-like MoS2. The optimized 1T/2H MoS2/CNFs composite exhibits superior electromagnetic wave absorption with minimum reflection (RLmin) of -42.26 dB and effective absorption bandwidth (EAB) of 6.48 GHz at 2.5 mm. Multi-facts contribute to the super performance. First, the uniquely designed nanosheet and 3D interconnected networks leads to multiple reflection and scattering of electromagnetic waves, which promotes the attenuation of electromagnetic waves. Second, the propriate content of CNFs and MoS2 with different phase regulates its impedance matching characteristic. Third, Numerous heterogeneous interfaces existed between CNFs and MoS2, 1T and 2H MoS2 phase results in interface polarization. Besides, the 1T/2H MoS2 rich in defects induces defect polarization, improving the dielectric loss. Furthermore, the electromagnetic wave absorption performance was proved via radar reflectance cross section simulation. This work illustrates 1T/2H MoS2/CNFs is a promising material for electromagnetic absorption with wide bandwidth, strong absorption, low density, and high thermal stability.

14.
Cell Death Discov ; 10(1): 249, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782895

ABSTRACT

Multiple gene abnormalities are major drivers of tumorigenesis. NF-κB p65 overactivation and cGAS silencing are important triggers and genetic defects that accelerate tumorigenesis. However, the simultaneous correction of NF-κB p65 and cGAS abnormalities remains to be further explored. Here, we propose a novel Induced Dual-Target Rebalance (IDTR) strategy for simultaneously correcting defects in cGAS and NF-κB p65. By using our IDTR approach, we showed for the first time that oncolytic adenovirus H101 could reactivate silenced cGAS, while silencing GAU1 long noncoding RNA (lncRNA) inhibited NF-κB p65 overactivation, resulting in efficient in vitro and in vivo antitumor efficacy in colorectal tumors. Intriguingly, we further demonstrated that oncolytic adenoviruses reactivated cGAS by promoting H3K4 trimethylation of the cGAS promoter. In addition, silencing GAU1 using antisense oligonucleotides significantly reduced H3K27 acetylation at the NF-κB p65 promoter and inhibited NF-κB p65 transcription. Our study revealed an aberrant therapeutic mechanism underlying two tumor defects, cGAS and NF-κB p65, and provided an alternative IDTR approach based on oncolytic adenovirus and antisense oligonucleotides for efficient therapeutic efficacy in tumors.

15.
BMC Public Health ; 24(1): 1392, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783255

ABSTRACT

BACKGROUND: Life satisfaction among Korean students is declining substantially, and multifaceted improvement efforts are required. METHODS: We analyzed longitudinal change trajectories for exercise, grit, and life satisfaction levels among Korean adolescents using latent growth modeling with longitudinal data from the Korean Children and Youth Panel Surveys of 2,142 students (male: 1,070, female: 1,072) from sixth grade (2020) through eighth grade (2022). RESULTS: The model, which tracked linear changes in the students' exercise, grit, and life satisfaction, showed consistent declines over three school years for all variables. We also identified a longitudinal causal relationship among exercise, grit, and life satisfaction. A higher grit intercept was associated with higher intercept for-and a partial mediating effect between-exercise and life satisfaction. The grit slope was positively related to the life satisfaction slope, and both the intercept and exercise slope had positive effects on life satisfaction. Moreover, grit had a longitudinal mediating effect between exercise and life satisfaction. CONCLUSIONS: We discuss the longitudinal change trajectories of exercise, grit, and life satisfaction, the causal and mediating effects among them, and the implications of the findings. These findings bolster our understanding of Korean adolescents' life satisfaction and have practical significance for designing programs to improve their quality of life.


Subject(s)
Exercise , Personal Satisfaction , Humans , Adolescent , Republic of Korea , Female , Male , Exercise/psychology , Longitudinal Studies , Quality of Life/psychology , Surveys and Questionnaires , Child
16.
Angew Chem Int Ed Engl ; : e202407578, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771454

ABSTRACT

For the 2D metal-free carbon catalysts, the atomic coplanar architecture enables a large number of pz orbitals to overlap laterally, thus forming π-electron delocalization, and the delocalization degree of the central atom dominates the catalytic activity. Herein, designing sulfur-doped defect-rich graphitic carbon nitride (S-Nv-C3N4) materials as a model, we propose a strategy to promote localized electron polarization by enhancing the ferromagnetism of ultra-thin 2D carbon nitride nanosheets. The introduction of sulfur (S) further promotes localized ferromagnetic coupling, thereby inducing long-range ferromagnetic ordering and accelerating the electron interface transport. Meanwhile, the hybridization of sulfur atoms breaks the symmetry and integrity of the unit structure, promotes electron enrichment and stimulating electron delocalization at the active site. This optimization enhances the *OOH desorption, providing a favorable kinetic pathway for the production of hydrogen peroxide (H2O2). Consequently, S-Nv-C3N4 exhibits high selectivity (>95%) and achieves a superb H2O2 production rate, approaching 4374.8 ppm during continuous electrolysis over 300-hour. According to theoretical calculation and in-situ spectroscopy, the ortho-S configuration can provide ferromagnetic perturbation in carbon active centers, leading to the electron delocalization, which optimizes the OOH* adsorption during the catalytic process.

17.
Ann Hematol ; 103(6): 2089-2102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691145

ABSTRACT

Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.


Subject(s)
Fever , Hematopoietic Stem Cell Transplantation , Machine Learning , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Female , Male , Adult , Middle Aged , Fever/etiology , Fever/diagnosis , Fever/blood , Algorithms , MicroRNAs/blood , Biomarkers/blood , Adolescent , Young Adult
18.
J Org Chem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808612

ABSTRACT

The rearrangement of sterically congested cyclic (amino)(aryl)carbenes (CAArCs) by the reaction of related iminium salts with potassium bis(trimethylsilyl)amide is reported, allowing for forming benzocyclobutanimines via a ring contraction process. Mechanistic studies by theoretical calculations indicate that the formation of conjugated ketenimines as intermediates could be considered, in which steric hindrance caused by N-alkyl motifs of CAArCs plays an important role in promoting the ring-opening by the cleavage of C-N bond.

19.
Chem Commun (Camb) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809134

ABSTRACT

A high concentration gel polymer electrolyte (GPE) was prepared by simply using LiFSI-LiNO3 dissolved in 1,3-dioxolane. The Li‖Li cell achieves stable battery cycling for over 3200 h. Furthermore, the Li‖Cu cell demonstrates a high CE of 99.2%. Even at a high current density of 8 mA cm-2, a high CE of 98.5% was still achieved. Notably, in a Li‖LiFePO4 cell, this electrolyte enables high capacity retention of 94.5% and an average CE of 99.8% over 500 cycles, showing promising prospects for high-performance lithium metal batteries.

20.
Nano Lett ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820129

ABSTRACT

Light management is critical to maximizing the external quantum efficiency of perovskite light-emitting diodes (PeLEDs), but strategies for enhancing light out-coupling are typically complex and expensive. Here, using a facile solvent treatment strategy, we create a layer of lithium fluoride (LiF) nanoislands that serve as a template to reconstruct the light-extracting interfaces for PeLEDs. The nanoisland interface rearranges the near-field light distribution in order to maximize the efficiency of internal light extraction. With the proper adjustment of the nanoisland size and distribution, we have achieved an optimal balance between charge injection and light out-coupling, resulting in bright, pure-red quasi-two-dimensional PeLEDs with a 21.8% peak external quantum efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...