Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838197

ABSTRACT

Leucine dehydrogenase (LeuDH, EC 1.4.1.9) can reversibly catalyze the oxidative deamination of l-leucine and some other specific α-amino acids to form the corresponding α-ketoacids. This reaction has great significance in the field of food additives and the pharmaceutical industry. The LeuDH from Exiguobacterium sibiricum (EsLeuDH) has high catalytic efficiency but limited thermal stability, hindering its widespread industrial application. In this study, a mutant N5F/I12L/A352Y of EsLeuDH (referred to as M2) was developed with enhanced thermal stability and catalytic activity through rational modification. The M2 mutant exhibits a half-life at 60 °C (t1/2(60 °C)) of 975.7 min and a specific activity of 69.6 U mg-1, which is 5.4 and 2.1 times higher than those of EsLeuDH, respectively. This research may facilitate the utilization of EsLeuDH at elevated temperatures, enhancing its potential for industrial applications. The findings offer a practical and efficient approach for optimizing LeuDH and other industrial enzymes.

2.
Biomolecules ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540769

ABSTRACT

Cyclic dinucleotides (CDNs) are cyclic molecules consisting of two nucleoside monophosphates linked by two phosphodiester bonds, which act as a second messenger and bind to the interferon gene stimulating factor (STING) to activate the downstream signaling pathway and ultimately induce interferon secretion, initiating an anti-infective immune response. Cyclic dinucleotides and their analogs are lead compounds in the immunotherapy of infectious diseases and tumors, as well as immune adjuvants with promising applications. Many agonists of pathogen recognition receptors have been developed as effective adjuvants to optimize vaccine immunogenicity and efficacy. In this work, the binding mechanism of human-derived interferon gene-stimulating protein and its isoforms with cyclic dinucleotides and their analogs was theoretically investigated using computer simulations and combined with experimental results in the hope of providing guidance for the subsequent synthesis of cyclic dinucleotide analogs.


Subject(s)
Membrane Proteins , Nucleotides, Cyclic , Humans , Membrane Proteins/metabolism , Second Messenger Systems , Interferons , Signal Transduction , Adjuvants, Immunologic
SELECTION OF CITATIONS
SEARCH DETAIL
...