Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Plant Physiol ; 277: 153807, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36095952

ABSTRACT

Annual ryegrass is a widely cultivated forage grass with rapid growth and high productivity. However, drought is one of the abiotic stresses affecting ryegrass growth and quality. In this study, we compared the physiological and transcriptome responses of Chuansi No.1 (drought-tolerant, DT) and Double Barrel (drought-sensitive, DS) under drought stress simulated by PEG-6000 for 7 days. The results showed that Chuansi No. 1 had stronger physiological and biochemical parameters such as root properties, water content, osmotic adjustment ability and antioxidant ability. In addition, RNA-seq was used to elucidate the molecular mechanism of root drought resistance. We identified 8588 differentially expressed genes related to drought tolerance in root, which were mainly enriched in oxidation-reduction process, carbohydrate metabolic process, apoplast, arginine and proline metabolism, and phenylpropanoid biosynthesis pathways. The expression levels of DEGs were consistent with physiological changes of ryegrass under drought stress. We found that genes related to sucrose and starch synthesis, root development, osmotic adjustment, ABA signal regulation and specifically up-regulated transcription factors such as WRKY41, WRKY51, ERF7, ERF109, ERF110, NAC43, NAC68, bHLH162 and bHLH148 in Chuansi No. 1 may be the reason for its higher drought tolerance. This study revealed the underlying physiological and molecular mechanisms of root response to drought stress in ryegrass and provided some new candidate genes for breeding rye drought tolerant varieties.


Subject(s)
Droughts , Lolium , Antioxidants , Arginine , Carbohydrates , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Lolium/genetics , Plant Breeding , Proline/genetics , Starch , Sucrose , Transcription Factors/genetics , Water
2.
ACS Nano ; 16(5): 7503-7511, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35486895

ABSTRACT

Beyond-diffraction-limit optical absorption spectroscopy provides in-depth information on the graded band structures of composition-spread and stacked two-dimensional materials, in which direct/indirect bandgap, interlayer coupling, and defects significantly modify their optoelectronic functionalities such as photoluminescence efficiency. We here visualize the spatially varying band structure of monolayer and bilayer transition metal dichalcogenide alloys by using near-field broadband absorption microscopy. The near-field spectral and spatial information manifests the excitonic band shift that results from the interplay of composition spreading and interlayer coupling. These results enable us to identify, notably, the top layer of the bilayer alloy as pure WS2. We also use the aberration-free near-field transmission images to demarcate the exact boundaries of alloyed and pure transition metal dichalcogenides. This technology can offer valuable insights on various layered structures in the era of "stacking science" in the quest of quantum optoelectronic devices.

3.
Nanoscale Res Lett ; 17(1): 34, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35286495

ABSTRACT

Moiré lattice in artificially stacked monolayers of two-dimensional (2D) materials effectively modulates the electronic structures of materials, which is widely highlighted. Formation of the electronic Moiré superlattice promises the prospect of uniformity among different moiré cells across the lattice, enabling a new platform for novel properties, such as unconventional superconductivity, and scalable quantum emitters. Recently, epitaxial growth of the monolayer transition metal dichalcogenide (TMD) is achieved on the sapphire substrate by chemical vapor deposition (CVD) to realize scalable growth of highly-oriented monolayers. However, fabrication of the scalable Moiré lattice remains challenging due to the lack of essential manipulation of the well-aligned monolayers for clean interface quality and precise twisting angle control. Here, scalable and highly-oriented monolayers of TMD are realized on the sapphire substrates by using the customized CVD process. Controlled growth of the epitaxial monolayers is achieved by promoting the rotation of the nuclei-like domains in the initial growth stage, enabling aligned domains for further grain growth in the steady-state stage. A full coverage and distribution of the highly-oriented domains are verified by second-harmonic generation (SHG) microscopy. By developing the method for clean monolayer manipulation, hetero-stacked bilayer (epi-WS2/epi-MoS2) is fabricated with the specific angular alignment of the two major oriented monolayers at the edge direction of 0°/ ± 60°. On account of the optimization for scalable Moiré lattice with a high-quality interface, the observation of interlayer exciton at low temperature illustrates the feasibility of scalable Moiré superlattice based on the oriented monolayers.

4.
Nanoscale ; 14(17): 6323-6330, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35297443

ABSTRACT

Heterojunctions made by laterally stitching two different transition metal dichalcogenide monolayers create a unique one-dimensional boundary with intriguing local optical properties that can only be characterized by nanoscale-spatial-resolution spectral tools. Here, we use near-field photoluminescence (NF-PL) to reveal the narrowest region (105 nm) ever reported of photoluminescence quenching at the junction of a laterally stitched WS2/MoS2 monolayer. We attribute this quenching to the atomically sharp band offset that generates a strong electric force at the junction to easily dissociate excitons. Besides the sharp heterojunction, a model considering various widths of the alloying interfacial region under low or high optical pumping is presented. With a spatial resolution six times better than that of confocal microscopy, NF-PL provides an unprecedented spectral tool for non-scalable 1D lateral heterojunctions.

5.
Nano Lett ; 21(6): 2596-2602, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33689382

ABSTRACT

Non-Hermitian photonic systems with gains and/or losses have recently emerged as a powerful approach for topology-protected optical transport and novel device applications. To date, most of these systems employ coupled optical systems of diffraction-limited dielectric waveguides or microcavities, which exchange energy spatially or temporally. Here, we introduce a diffraction-unlimited approach using a plasmon-exciton coupling (polariton) system with tunable plasmonic resonance (energy and line width) and coupling strength. By designing a chirped silver nanogroove cavity array and coupling a single tungsten disulfide monolayer with a large contrast in resonance line width, we show the tuning capability through energy level anticrossing and plasmon-exciton hybridization (line width crossover), as well as spontaneous symmetry breaking across the exceptional point at zero detuning. This two-dimensional hybrid material system can be applied as a scalable and integratable platform for non-Hermitian photonics, featuring seamless integration of two-dimensional materials, broadband tuning, and operation at room temperature.

6.
ACS Nano ; 14(7): 8838-8845, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32589398

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive technique to identify vibrational fingerprints of trace analytes. However, present SERS techniques suffer from the lack of uniform, reproducible, and stable substrates to control the plasmonic hotspots in a wide spectral range. Here, we report the promising application of epitaxial aluminum films as a scalable plasmonic platform for SERS applications. To assess the uniformity of aluminum substrates, atomically thin transition metal dichalcogenide monolayers are used as the benchmark analyte due to their inherent two-dimensional homogeneity. Besides the distinctive spectral capability of aluminum in the ultraviolet (325 nm), we demonstrate that the aluminum substrates can even perform comparably with the silver counterparts made from single-crystalline colloidal silver crystals using the same SERS substrate design in the visible range (532 nm). This is unexpected from the prediction solely based on optical dielectric functions and illustrate the superior surface and interface properties of epitaxial aluminum SERS substrates.

7.
Nanoscale Res Lett ; 15(1): 61, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32166402

ABSTRACT

Nanoelectronics of two-dimensional (2D) materials and related applications are hindered with critical contact issues with the semiconducting monolayers. To solve these issues, a fundamental challenge is selective and controllable fabrication of p-type or ambipolar transistors with a low Schottky barrier. Most p-type transistors are demonstrated with tungsten selenides (WSe2) but a high growth temperature is required. Here, we utilize seeding promoter and low pressure CVD process to enhance sequential WSe2 growth with a reduced growth temperature of 800 °C for reduced compositional fluctuations and high hetero-interface quality. Growth behavior of the sequential WSe2 growth at the edge of patterned graphene is discussed. With optimized growth conditions, high-quality interface of the laterally stitched WSe2-graphene is achieved and characterized with transmission electron microscopy (TEM). Device fabrication and electronic performances of the laterally stitched WSe2-graphene are presented.

8.
Adv Mater ; 31(37): e1901077, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31339199

ABSTRACT

Twisting between two stacked monolayers modulates periodic potentials and forms the Moiré electronic superlattices, which offers an additional degree of freedom to alter material property. Considerable unique observations, including unconventional superconductivity, coupled spin-valley states, and quantized interlayer excitons are correlated to the electronic superlattices but further study requires reliable routes to study the Moiré in real space. Scanning tunneling microscopy (STM) is ideal to precisely probe the Moiré superlattice and correlate coupled parameters among local electronic structures, strains, defects, and band alignment at atomic scale. Here, a clean route is developed to construct twisted lattices using synthesized monolayers for fundamental studies. Diverse Moiré superlattices are predicted and successfully observed with STM at room temperature. Electrical tuning of the Moiré superlattice is achieved with stacked TMD on graphite.

9.
Nat Commun ; 9(1): 3143, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087328

ABSTRACT

Interest in bringing p- and n-type monolayer semiconducting transition metal dichalcogenides (TMD) into contact to form rectifying pn diode has thrived since it is crucial to control the electrical properties in two-dimensional (2D) electronic and optoelectronic devices. Usually this involves vertically stacking different TMDs with pn heterojunction or, laterally manipulating carrier density by gate biasing. Here, by utilizing a locally reversed ferroelectric polarization, we laterally manipulate the carrier density and created a WSe2 pn homojunction on the supporting ferroelectric BiFeO3 substrate. This non-volatile WSe2 pn homojunction is demonstrated with optical and scanning probe methods and scanning photoelectron micro-spectroscopy. A homo-interface is a direct manifestation of our WSe2 pn diode, which can be quantitatively understood as a clear rectifying behavior. The non-volatile confinement of carriers and associated gate-free pn homojunction can be an addition to the 2D electron-photon toolbox and pave the way to develop laterally 2D electronics and photonics.

10.
Funct Plant Biol ; 45(12): 1205-1222, 2018 11.
Article in English | MEDLINE | ID: mdl-32291011

ABSTRACT

The interaction of chitosan and polyamines (PAs) could be involved mitigating drought stress in white clover (Trifolium repens L.). This research aimed to determine the effect of chitosan and PAs, and co-application of chitosan and PAs on improving drought tolerance associated with growth, phytohormones, polyamines and antioxidant metabolism. Plants were pretreated with or without 1gL-1 chitosan, 0.5mM spermine, or 1gL-1 chitosan+0.5mM spermine, then subjected to drought induced by polyethylene glycol (PEG) 6000 (-0.5MPa) in growth chambers for 14 days. Exogenous chitosan and spermine improved the level of PAs by regulating arginine decarboxylases, S-adenosyl methionine decarboxylase, copper-containing amine oxidase and polyamine oxidase activity, and expression of the genes encoding these enzymes under drought. Application of exogenous chitosan improved ABA content under normal and drought conditions. In addition, chitosan and spermine significantly enhanced the levels of cytokinin and GA, but reduced IAA levels during drought stress. Exogenous chitosan and spermine improved antioxidant defence, including enzyme activity, gene expression and the content of ascorbate and glutathione compounds, leading to a decline in superoxide anion radicals, H2O2 and malondialdehyde, effectively mitigating drought-induced oxidative damage. Other protective metabolites, such as total phenols and flavonoids, increased considerably under application of chitosan and spermine. These results suggest that chitosan-induced drought tolerance could be involved in PA metabolism, changes in endogenous phytohormones and antioxidant defence in white clover. Co-application of chitosan and spermine was more effective than either chitosan or spermine alone in mitigating drought stress.


Subject(s)
Chitosan , Trifolium , Antioxidants , Droughts , Hydrogen Peroxide , Plant Growth Regulators , Polyamines , Spermine
11.
Adv Mater ; 30(7)2018 Feb.
Article in English | MEDLINE | ID: mdl-29271505

ABSTRACT

Recently, monolayers of van der Waals materials, including transition metal dichalcogenides (TMDs), are considered ideal building blocks for constructing 2D artificial lattices and heterostructures. Heterostructures with multijunctions of more than two monolayer TMDs are intriguing for exploring new physics and materials properties. Obtaining in-plane heterojunctions of monolayer TMDs with atomically sharp interfaces is very significant for fundamental research and applications. Currently, multistep synthesis for more than two monolayer TMDs remains a challenge because decomposition or compositional alloying is thermodynamically favored at the high growth temperature. Here, a multistep chemical vapor deposition (CVD) synthesis of the in-plane multijunctions of monolayer TMDs is presented. A low growth temperature synthesis is developed to avoid compositional fluctuations of as-grown TMDs, defects formations, and interfacial alloying for high heterointerface quality and thermal stability of monolayer TMDs. With optimized parameters, atomically sharp interfaces are successfully achieved in the synthesis of in-plane artificial lattices of the WS2 /WSe2 /MoS2 at reduced growth temperatures. Growth behaviors as well as the heterointerface quality are carefully studied in varying growth parameters. Highly oriented strain patterns are found in the second harmonic generation imaging of the TMD multijunctions, suggesting that the in-plane heteroepitaxial growth may induce distortion for unique material symmetry.

12.
Nat Commun ; 8(1): 35, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28652572

ABSTRACT

Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 µm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS2/MoS2 monolayer heterostructure on top of an Al2O3-capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

13.
Front Physiol ; 8: 1107, 2017.
Article in English | MEDLINE | ID: mdl-29312009

ABSTRACT

In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.

14.
Front Plant Sci ; 7: 496, 2016.
Article in English | MEDLINE | ID: mdl-27148320

ABSTRACT

Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa "Yaan" and H. altissima "1110." Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for "Yaan" and "1110," respectively. In addition, a total of 86,731 "Yaan" and 48,645 "1110" unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11-87.04%) of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus.

15.
C R Biol ; 339(2): 60-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26874459

ABSTRACT

Simple sequence repeat (SSR) markers are widely applied in studies of plant molecular genetics due to their abundance in the genome, codominant nature, and high repeatability. However, microsatellites are not always available for the species to be studied and their isolation could be time- and cost-consuming. To investigate transferability in cross-species applications, 102 primer pairs previously developed in ryegrass and tall fescue were amplified across three allogamous ryegrass species including Lolium rigidum, Lolium perenne and Lolium multiflorum. Their highly transferability (100%) were evidenced. While, most of these markers were multiple loci, only 17 loci were selected for a robust, single-locus pattern, which may be due to the recentness of the genome duplication or duplicated genomic regions, as well as speciation. A total of 87 alleles were generated with an average of 5.1 per locus. The mean polymorphism information content (PIC) and observed heterozygosity (Ho) values at genus was 0.5532 and 0.5423, respectively. Besides, analysis of molecular variance (AMOVA) revealed that all three levels contributed significantly to the overall genetic variation, with the species level contributing the least (P<0.001). Also, the unweighted pair group method with arithmetic averaging dendrogram (UPGMA), Bayesian model-based STRUCTURE analysis and the principal coordinate analysis (PCoA) showed that accessions within species always tended to the same cluster firstly and then to related species. The results showed that these markers developed in related species are transferable efficiently across species, and likely to be useful in analyzing genetic diversity.


Subject(s)
Genetic Variation/genetics , Lolium/genetics , Microsatellite Repeats/genetics , Alleles , Bayes Theorem , Breeding/methods , Genetic Markers/genetics , Phylogeny , Polymorphism, Genetic/genetics , Species Specificity
16.
Nanoscale ; 8(10): 5627-33, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26892905

ABSTRACT

Magnetism of the MoS2 semiconducting atomic layer was highlighted for its great potential in the applications of spintronics and valleytronics. In this study, we demonstrate an evolution of magneto-electrical properties of single layer MoS2 with the modulation of defect configurations and formation of a partial 1T phase. With Ar treatment, sulfur was depleted within the MoS2 flake leading to a 2H (low-spin) → partial 1T (high-spin) phase transition. The phase transition was accompanied by the development of a ferromagnetic phase. Alternatively, the phase transition could be driven by the desorption of S atoms at the edge of MoS2via O2 treatment while with a different ordering magnitude in magnetism. The edge-sensitive magnetism of the single-layer MoS2 was monitored by magnetic force microscopy and validated by a first-principle calculation with graded-Vs (sulfur vacancy) terminals set at the edge, where band-splitting appeared more prominent with increasing Vs. Treatment with Ar and O2 enabled a dual electrical characteristic of the field effect transistor (FET) that featured linear and saturated responses of different magnitudes in the Ids-Vds curves, whereas the pristine MoS2 FET displayed only a linear electrical dependency. The correlation and tuning of the Vs-1T phase transition would provide a playground for tailoring the phase-driven properties of MoS2 semiconducting atomic layers in spintronic applications.

17.
PLoS One ; 10(3): e0120708, 2015.
Article in English | MEDLINE | ID: mdl-25835290

ABSTRACT

The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. 'Ladino' and drought-resistant cv. 'Haifa') under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. 'Haifa', but had no effect on drought-susceptible cv. 'Ladino'. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. 'Ladino' than that in cv. 'Haifa'. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.


Subject(s)
Carbohydrate Metabolism , Droughts , Fabaceae/physiology , Plant Proteins/biosynthesis , Spermine/metabolism , Gene Expression Regulation, Plant , Phenotype , Sorbitol/metabolism , Stress, Physiological , Succinate Dehydrogenase/metabolism
18.
Nano Lett ; 15(1): 410-5, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25494614

ABSTRACT

Atomically thin heterostructures of transition-metal dichalcogenides (TMDs) with various geometrical and energy band alignments are the key materials for next generation flexible nanoelectronics. The individual TMD monolayers can be adjoined laterally to construct in-plane heterostructures, which are difficult to reach with the laborious pick-up-and-transfer method of the exfoliated flakes. The ability to produce copious amounts of high quality layered heterostructures on diverse surfaces is highly desirable but it has remained a challenging issue. Here, we have achieved a direct synthesis of lateral heterostructures of monolayer TMDs: MoS(2)-WS(2) and MoSe(2)-WSe(2). The synthesis was performed using ambient-pressure chemical vapor deposition (CVD) with aromatic molecules as seeding promoters. We discuss possible growth behaviors, and we examine the symmetry and the interface of these heterostructures using second-harmonic generation and atomic-resolution scanning TEM. We found that the one-dimensinal (1D) interface of the lateral heterostructures picks the zigzag direction of the lattice instead of the armchair direction. Our method offers a controllable synthesis to obtain high-quality in-plane heterostructures of TMD atomic layers with 1D interface geometry.

19.
Molecules ; 19(12): 21541-59, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25532848

ABSTRACT

Start codon targeted polymorphism (SCoT) analysis was employed to distinguish 37 whipgrass (Hemarthria compressa L.) clones and assess the genetic diversity and population structure among these genotypes. The informativeness of markers was also estimated using various parameters. Using 25 highly reproducible primer sets, 368 discernible fragments were generated. Of these, 282 (77.21%) were polymorphic. The number of alleles per locus ranged from five to 21, and the genetic variation indices varied. The polymorphism information content (PIC) was 0.358, the Shannon diversity index (H) was 0.534, the marker index (MI) was 4.040, the resolving power (RP) was 6.108, and the genotype index (GI) was 0.782. Genetic similarity coefficients (GS) between the accessions ranged from 0.563 to 0.872, with a mean of 0.685. Their patterns observed in a dendrogram constructed using the unweighted pair group method with arithmetic mean analysis (UPGMA) based on GS largely confirmed the results of principal coordinate analysis (PCoA). PCoA was further confirmed by Bayesian model-based STRUCTURE analysis, which revealed no direct association between genetic relationship and geographical origins as validated by Mantel's test (r = 0.2268, p = 0.9999). In addition, high-level genetic variation within geographical groups was significantly greater than that between groups, as determined by Shannon diversity analysis, analysis of molecular variance (AMOVA) and Bayesian analysis. Overall, SCoT analysis is a simple, effective and reliable technique for characterizing and maintaining germplasm collections of whipgrass and related species.


Subject(s)
Poaceae/genetics , Polymorphism, Genetic , Base Sequence , Bayes Theorem , China , Cluster Analysis , Codon, Initiator/genetics , DNA Primers/genetics , Genes, Plant , Genetic Markers , Haplotypes , Models, Genetic , Phylogeny , Phylogeography
20.
Molecules ; 19(11): 18003-24, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25379640

ABSTRACT

This study was designed to determine the effect of exogenous spermidine (Spd) (30 µM) on white clover seed germination under water stress induced by polyethylene glycol 6000. Use of seed priming with Spd improved seed germination percentage, germination vigor, germination index, root viability and length, and shortened mean germination time under different water stress conditions. Seedling fresh weight and dry weight also increased significantly in Spd-treated seeds compared with control (seeds primed with distilled water). Improved starch metabolism was considered a possible reason for this seed invigoration, since seeds primed with Spd had significantly increased α-amylase/ß-amylase activities, reducing sugar, fructose and glucose content and transcript level of ß-amylase gene but not transcript level of α-amylase gene. In addition, the physiological effects of exogenous Spd on improving seeds' tolerance to water deficit during germination were reflected by lower lipid peroxidation levels, better cell membrane stability and significant higher seed vigour index in seedlings. Enhanced antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase), ascorbate-glutathione cycle (ASC-GSH cycle) and transcript level of genes encoding antioxidant enzymes induced by exogenous Spd may be one of the critical reasons behind acquired drought tolerance through scavenging of reactive oxygen species (ROS) in water-stressed white clover seeds. The results indicate that Spd plays an important function as a stress-protective compound or physiological activator.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Medicago/metabolism , Seeds/metabolism , Spermidine/pharmacology , Starch/metabolism , Stress, Physiological/drug effects , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...