Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794480

ABSTRACT

Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize, this study utilized the susceptible temperate inbred line Ye107 as the male parent crossed with three resistant tropical maize inbred lines (CML312, D39, and Y32) to generate 627 F7 recombinant inbred lines (RILs), with the aim of identifying maize disease-resistant loci and candidate genes for common rust. Phenotypic data showed good segregation between resistance and susceptibility, with varying degrees of resistance observed across different subpopulations. Significant genotype effects and genotype × environment interactions were observed, with heritability ranging from 85.7% to 92.2%. Linkage and genome-wide association analyses across the three environments identified 20 QTLs and 62 significant SNPs. Among these, seven major QTLs explained 66% of the phenotypic variance. Comparison with six SNPs repeatedly identified across different environments revealed overlap between qRUST3-3 and Snp-203,116,453, and Snp-204,202,469. Haplotype analysis indicated two different haplotypes for CR resistance for both the SNPs. Based on LD decay plots, three co-located candidate genes, Zm00001d043536, Zm00001d043566, and Zm00001d043569, were identified within 20 kb upstream and downstream of these two SNPs. Zm00001d043536 regulates hormone regulation, Zm00001d043566 controls stomatal opening and closure, related to trichome, and Zm00001d043569 is associated with plant disease immune responses. Additionally, we performed candidate gene screening for five additional SNPs that were repeatedly detected across different environments, resulting in the identification of five candidate genes. These findings contribute to the development of genetic resources for common rust resistance in maize breeding programs.

2.
J Asian Nat Prod Res ; 26(7): 803-811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38721701

ABSTRACT

Two new triterpenes mayteneri A (1), mayteneri B (2), and seven known compounds (3-9) were isolated from stems of Maytenus hookeri Loes. The chemical structures of compounds 1 and 2 were established by 1D, 2D NMR, HRESIMS analysis, and calculating electronic circular dichroism (ECD). The structures of known compounds 3-9 were determined by comparison of their spectral with those reported. Compounds 4-7 showed significant inhibitory activity for NLRP3 inflammasome, with the IC50 values of 2.36-3.44 µM.


Subject(s)
Maytenus , Oleanolic Acid , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , Maytenus/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Plant Stems/chemistry , Animals , Mice , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
3.
Bioorg Chem ; 147: 107315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604017

ABSTRACT

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Subject(s)
Ascomycota , Coronavirus 3C Proteases , Polyketides , SARS-CoV-2 , Terpenes , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Ascomycota/chemistry , Humans , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Structure-Activity Relationship , COVID-19 Drug Treatment , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
4.
Org Lett ; 26(10): 2114-2118, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38437731

ABSTRACT

Herein, we report a general and practical nickel-catalyzed deaminative alkylation of Katritzky salts with cyclopropyl alcohols via merging C-N and C-C bond activation. This protocol enables the formation of an alkyl-alkyl bond along with the generation of a versatile ketone functional group in a single operation, thus providing a convenient approach for accessing ß-alkyl ketones. This reaction is distinguished by its high functional group tolerance, broad substrate scope, and efficient late-stage derivatization of complex bioactive molecules.

5.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339032

ABSTRACT

Tassel weight (TW) is a crucial agronomic trait that significantly affects pollen supply and grain yield development in maize breeding. To improve maize yield and develop new varieties, a comprehensive understanding of the genetic mechanisms underlying tassel weight is essential. In this study, tropical maize inbred lines, namely CML312, CML373, CML444, and YML46, were selected as female parents and crossed with the elite maize inbred line Ye107, which served as the common male parent, to develop a multi-parent population comprising four F8 recombinant inbred line (RIL) subpopulations. Using 6616 high-quality single nucleotide polymorphism (SNP) markers, we conducted genome-wide association analysis (GWAS) and genomic selection (GS) on 642 F8 RILs in four subpopulations across three different environments. Through GWAS, we identified 16 SNPs that were significantly associated with TW, encompassing two stable loci expressed across multiple environments. Furthermore, within the candidate regions of these SNPs, we discovered four novel candidate genes related to TW, namely Zm00001d044362, Zm00001d011048, Zm00001d011049, and Zm00001d031173 distributed on chromosomes 1, 3, and 8, which have not been previously reported. These genes are involved in processes such as signal transduction, growth and development, protein splicing, and pollen development, all of which play crucial roles in inflorescence meristem development, directly affecting TW. The co-localized SNP, S8_137379725, on chromosome 8 was situated within a 16.569 kb long terminal repeat retrotransposon (LTR-RT), located 22.819 kb upstream and 26.428 kb downstream of the candidate genes (Zm00001d011048 and Zm00001d011049). When comparing three distinct GS models, the BayesB model demonstrated the highest accuracy in predicting TW. This study establishes the theoretical foundation for future research into the genetic mechanisms underlying maize TW and the efficient breeding of high-yielding varieties with desired tassel weight through GS.


Subject(s)
Genome-Wide Association Study , Inflorescence , Inflorescence/genetics , Quantitative Trait Loci , Zea mays/genetics , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide
6.
Phytochemistry ; 221: 114042, 2024 May.
Article in English | MEDLINE | ID: mdl-38417721

ABSTRACT

Ethyl acetate fraction of Toddalia asiatica was fractionated to yield fifteen previously undescribed prenylated coumarins, asiaticasics A-O (1-15) along with nine (16-24) known derivatives. The structures of these undescribed coumarins were established by spectroscopic analysis and reference data. Biological activity evaluation showed that compound 3 with the IC50 value of 2.830 µM and compound 12 with the IC50 value of 0.682 µM owned anti-inflammatory activity by detecting the rate of lactate dehydrogenase release in pyroptosis J774A.1 cells. The results showed that the expression of Caspase-1 and IL-1ß was decreased in a dose-dependent manner in the compound 12 treatment group, suggesting that compound 12 may reduce pyroptosis by inhibiting NLRP3 inflammasome. To further determine that compound 12 treatment can inhibit macrophage pyroptosis, morphological observation was performed and the results were consistent with the bioactivity evaluation.


Subject(s)
Coumarins , Rutaceae , Coumarins/chemistry , Rutaceae/chemistry , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Roots/chemistry
7.
Plants (Basel) ; 13(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38337988

ABSTRACT

Banded leaf and sheath blight (BLSB) in maize is a soil-borne fungal disease caused by Rhizoctonia solani Kühn, resulting in significant yield losses. Investigating the genes responsible for regulating resistance to BLSB is crucial for yield enhancement. In this study, a multiparent maize population was developed, comprising two recombinant inbred line (RIL) populations totaling 442 F8RILs. The populations were generated by crossing two tropical inbred lines, CML444 and NK40-1, known for their BLSB resistance, as female parents, with the high-yielding but BLSB-susceptible inbred line Ye107 serving as the common male parent. Subsequently, we utilized 562,212 high-quality single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) for a comprehensive genome-wide association study (GWAS) aimed at identifying genes responsible for BLSB resistance. The objectives of this study were to (1) identify SNPs associated with BLSB resistance through genome-wide association analyses, (2) explore candidate genes regulating BLSB resistance in maize, and (3) investigate pathways involved in BLSB resistance and discover key candidate genes through Gene Ontology (GO) analysis. The GWAS analysis revealed nineteen SNPs significantly associated with BLSB that were consistently identified across four environments in the GWAS, with phenotypic variation explained (PVE) ranging from 2.48% to 11.71%. Screening a 40 kb region upstream and downstream of the significant SNPs revealed several potential candidate genes. By integrating information from maize GDB and the NCBI, we identified five novel candidate genes, namely, Zm00001d009723, Zm00001d009975, Zm00001d009566, Zm00001d009567, located on chromosome 8, and Zm00001d026376, on chromosome 10, related to BLSB resistance. These candidate genes exhibit association with various aspects, including maize cell membrane proteins and cell immune proteins, as well as connections to cell metabolism, transport, transcriptional regulation, and structural proteins. These proteins and biochemical processes play crucial roles in maize defense against BLSB. When Rhizoctonia solani invades maize plants, it induces the expression of genes encoding specific proteins and regulates corresponding metabolic pathways to thwart the invasion of this fungus. The present study significantly contributes to our understanding of the genetic basis of BLSB resistance in maize, offering valuable insights into novel candidate genes that could be instrumental in future breeding efforts to develop maize varieties with enhanced BLSB resistance.

8.
Fitoterapia ; 173: 105821, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211643

ABSTRACT

Four new diterpenoids (1-4) and four known diterpenoids (5-8) were purified from the whole plant of Euphorbia helioscopia L. Compounds 1 and 2 were jathophanes diterpenoids with a 5/12 polycyclic systems, compound 3 was rhamofolane diterpenoid with a 5/10 bicyclic skeleton and compound 4 was a rare class of euphorbia diterpenes featuring an unusual 5/10 fused ring system. Anti-inflammatory activity tests were conducted on the separated compounds, indicating that compound 4 had significant inhibitory effect on NLRP3 inflammasome with an IC50 value of 7.75 µM. Further, the inhibitory effect of 4 was determined using immunofluorescence assays.


Subject(s)
Diterpenes , Euphorbia , Molecular Structure , Diterpenes/pharmacology , Anti-Inflammatory Agents/pharmacology
9.
Chem Biodivers ; 20(12): e202301676, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37971960

ABSTRACT

Three new compounds callicarpenoids A-C (1-3), were isolated from the stems of Callicarpa arborea Roxb together with fifteen known compounds (4-18). The structures of these compounds were elucidated using advanced spectroscopic techniques, including 1D and 2D NMR, UV, IR, HR-ESI-MS, ECD, ORD, and quantum chemical calculations. Compound 3, a rare rearranged diterpenoid with a fused 5/6-ring system demonstrated strong potential as an inhibitor of the NLRP3 inflammasome activation with an IC50 value of 3.153 µM. It effectively reduced GSDMD-NT production, inhibited caspase-1 activation, and suppressed IL-1ß secretion, thereby mitigating NLRP3 inflammasome-induced pyroptosis in J774A.1 cells. These findings suggest that compound 3 warrants further research and development as a promising NLRP3 inflammasome inhibitor.


Subject(s)
Callicarpa , Diterpenes, Clerodane , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Diterpenes, Clerodane/pharmacology , Callicarpa/chemistry , Magnetic Resonance Spectroscopy
10.
Chem Biodivers ; 20(12): e202301628, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964626

ABSTRACT

Two new prostaglandin-like compounds callicarboric acids A-B (1-2), along with six known compounds (3-8) were isolated from the stems of Callicarpa arborea Roxb. Their structures were determined with the help of modern spectroscopic techniques such as NMR, UV, IR, HR-ESI-MS, ECD, and ORD with the assistance of quantum chemical calculations. Compound 1 exhibited remarkable anti-NLRP3 inflammasome activation potential, demonstrating an IC50 value of 0.74 µM. Additionally, by reducing GSDMD-NT production, inhibiting caspase-1 activation, and suppressing IL-1ß secretion, it effectively mitigated NLRP3 inflammasome-induced pyroptosis in J774A.1 cells. These findings indicate that compound 1 possesses the capability to be a valuable candidate for further research and development as an NLRP3 inflammasome inhibitor.


Subject(s)
Callicarpa , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Prostaglandins/pharmacology , Pyroptosis
11.
Eur J Med Chem ; 261: 115787, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37690263

ABSTRACT

Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.


Subject(s)
Photochemotherapy , Porphyrins , Animals , Mice , Humans , Photosensitizing Agents , Mice, Nude , Cell Line, Tumor , Photochemotherapy/methods , Porphyrins/pharmacology
12.
Org Lett ; 25(37): 6846-6852, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37682735

ABSTRACT

A facile and convenient anion cascade strategy was developed for the synthesis of bridged-ring amides in moderate to excellent yields in one step in the presence of tBuOK in EtOH under mild conditions, starting from various cheap and commercially available 2-cyanoacetamides and precisely designed straight-chain and annular 1,4-dienones. This simple protocol was generally applicable to a wide range of substrates with high chemical conversion and diastereoselectivity.

13.
RSC Adv ; 13(39): 27158-27166, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37701284

ABSTRACT

A palladium(ii)-catalyzed intramolecular oxidative aza-Wacker-type reaction of vinyl cyclopropanecarboxamides to access a series of conformationally restricted highly substituted aza[3.1.0]bicycles is reported. The transformation proceeded through a typical aza-Wacker reaction mechanism to forge a new C-N bond with oxygen as the terminal oxidant. The desired fused heterocycles were obtained in moderate yields. The process is tolerant of a range of functional aryl groups under mild conditions.

14.
Fitoterapia ; 171: 105654, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37595644

ABSTRACT

Nine previously undescribed clerodane-type diterpenoids (1-9), named caseabalanspenes A-I, along with six know compounds (10-15), were isolated from the twigs and leaves of Casearia velutina. Spectroscopic data (1D and 2D NMR) analysis permitted the definition of their structures and then determination of the molecular formula of the compound by high resolution mass spectrometry (HR-ESI-MS). It is worth noting that compound 7 contains N- heterocycle. Compounds 1-8 were tested the anti-inflammasome activity, and compound 3 exhibited potent activity and decreased LDH level in a dose-dependent manner, with IC50 values of 2.90 µM.


Subject(s)
Antineoplastic Agents, Phytogenic , Casearia , Diterpenes, Clerodane , Casearia/chemistry , Molecular Structure , Drug Screening Assays, Antitumor , Plant Leaves/chemistry
15.
Colloids Surf B Biointerfaces ; 230: 113489, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37574617

ABSTRACT

Drug-induced liver injury (DILI) is a commonly encountered and diagnostically complex etiology of acute liver failure, characterized by early indications of hepatic oxidative stress. The most economical approach for DILI treatment is effective and durable oxidative stress prevention. Herein, we propose a long-lasting nanoantioxidant called PDA-Zn-BAI NPs characterized by sustained-release of baicalein (a natural antioxidant) for the long-lasting prevention of DILI. It is constructed using dopamine as an intermediate and layer-by-layer reinforcement strategy based on Zn2+-mediated coordination bonding, π-π stacking, and steric hindrance made of polydopamine network. Optimized PDA-Zn-BAI NPs performed a satisfactory sustained-release effect (36.67% ± 6.67 in normal condition and 60.32% ± 3.19 in acid condition of cumulative release within 5 days). Furthermore, it's been found that PDA-Zn-BAI NPs could continuously be accumulated in the liver with negligible hepatotoxicity and were activated to effectively scavenge reactive oxygen species to break off the damage of acetaminophen to the liver within 5 days (ALT as an indicator, > 70% prevention effect lasts for 5 days), which was vital for the long-lasting prevention of DILI. The long-lasting detoxification by PDA-Zn-BAI NPs in patients with DILI suggested a potential clinical application, especially for those patients who need prolonged administration of hepatotoxic drugs.


Subject(s)
Chemical and Drug Induced Liver Injury , Humans , Delayed-Action Preparations/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Acetaminophen/adverse effects , Liver , Antioxidants/pharmacology
16.
Biomed Pharmacother ; 164: 114955, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269810

ABSTRACT

Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.


Subject(s)
Biological Products , Plants, Medicinal , Biological Products/pharmacology , Drug Delivery Systems
17.
Molecules ; 28(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175101

ABSTRACT

3-Azabicyclo[3.1.0]hexanes are common structural components in natural products and bioactive compounds. Traditionally, the metal-mediated cyclopropanation domino reaction of chain enzymes is the most commonly used strategy for the construction of this type of aza[3.1.0]bicycle derivative. In this study, a base-promoted intramolecular addition of alkenes used to deliver conformationally restricted highly substituted aza[3.1.0]bicycles is reported. This reaction was tailor-made for saturated aza[3.1.0] bicycle-containing fused bicyclic compounds that may be applied in the development of concise and divergent total syntheses of bioactive compounds.

18.
Nat Prod Res ; : 1-10, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37161750

ABSTRACT

Three new lanostane triterpenoids (1-3) along with two new amides fatty compounds (4-5) were isolated from the ethyl acetate extract of a culture of the endophytic fungus Alternaria sp. gx-2. Their structures were identified by 1D and 2D NMR spectral data and HRESIMS. Compounds 1-12 were evaluated for their anti-inflammatory and tyrosinase inhibition activities. The isolated compounds did not show inhibitory activities at a concentration of 100 µM against tyrosinase, while under the concentration of 10 µM, the release of lactate dehydrogenase (LDH) inhibition rate of compound 1 was 54.45%, indicating that compound 1 had moderate anti-inflammatory activity on the activation of NLRP3 inflammasome.

19.
Phytochemistry ; 210: 113665, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37044361

ABSTRACT

Fourteen undescribed seco-type diterpenoids, named nudifloids A-N, together with ten known analogs, were isolated from the leaves of Callicarpa nudiflora. Nudifloids A-N had a characteristic 3,4-seco-labdane-type diterpenoid skeleton, whereas nudifloids A-C and K-N were 3,4-seco-norditerpenoids. Nudifloid A was the first example of a 3,4-seco-12,13,14,15,16-quartnor-labdane diterpenoid, with a seven-membered lactone ring formed through esterification between C-3 and C-11. Nudifloids B and C were a pair of highly modified 3,4-seco-labdane nor-diterpenoid epimers, of which C-2 and C-18 were cyclized together to form a cyclohexene fragment. The structures of these undescribed diterpenoids were established by spectroscopic analysis and reference data. The anti-inflammatory activity of diterpenoids in rich yield was evaluated by analyzing the inhibition of lipopolysaccharide plus nigericin-induced pyroptosis in J774A.1 cells. Nudifloids D and E exhibited prominent anti-NLRP3 inflammasome activity, with IC50 values of 1.80 and 1.59 µM, respectively. Cell permeability assays revealed that nudifloid D inhibited pyroptosis, which could ameliorate inflammation by blocking the activation of the NLRP3 inflammasome.


Subject(s)
Callicarpa , Diterpenes , Drugs, Chinese Herbal , Callicarpa/chemistry , Inflammasomes , Molecular Structure , Drugs, Chinese Herbal/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
20.
Fitoterapia ; 168: 105519, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121407

ABSTRACT

Eleven undescribed 16,17-dinor-abietane diterpenoids, caseazins A-K (1-11), and ten known diterpenoids (12-21) were isolated from the twigs and leaves of Casearia kurzii (Flacourtiaceae). Caseazins A-K were the first abietane -type dinorditerpenoids to have been isolated from the plant of Casearia kurzii. Their chemical structures were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations of 5 and 10 were established by electronic circular dichroism calculations. Moreover, compounds 2, 3, 13, 14, and 18 exhibited anti-inflammatory activity with IC50 values of 0.17, 0.36, 6.55, 1.30, and 4.53 µM, respectively. IL-1ß and caspase-1 analyses suggested that compound 14 inhibited NLRP3 inflammasome activation and blocked macrophage pyroptosis.


Subject(s)
Casearia , Diterpenes, Clerodane , Diterpenes , Abietanes/pharmacology , Abietanes/chemistry , Casearia/chemistry , Molecular Structure , Diterpenes, Clerodane/pharmacology , Diterpenes/pharmacology , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...