Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 665
Filter
2.
Org Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843448

ABSTRACT

An efficient and concise strategy for the synthesis of cyclic dipeptides via Pd-catalyzed site-selective δ-C(sp2)-H amination/fluorination and N-to-C cyclization is disclosed. The backbone amides within the dipeptides serves as endogenous directing groups, while the desired products were switched by the C-terminal ester group. This chemistry presents a novel and robust alternative to construct cyclodipeptide fragments.

3.
Exp Ther Med ; 28(1): 295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38827477

ABSTRACT

Ammonia (NH3) is an irritating and harmful gas that affects cell apoptosis and autophagy. Sirtuin 5 (SIRT5) has multiple enzymatic activities and regulates NH3-induced autophagy in tumor cells. In order to determine whether SIRT5 regulates NH3-induced bovine mammary epithelial cell apoptosis and autophagy, cells with SIRT5 overexpression or knockdown were generated and in addition, bovine mammary epithelial cells were treated with SIRT5 inhibitors. The results showed that SIRT5 overexpression reduced the content of NH3 and glutamate in cells by inhibiting glutaminase activity in glutamine metabolism, and reduced the ratio of ADP/ATP. The results in the SIRT5 knockdown and inhibitor groups were comparable, including increased content of NH3 and glutamate in cells by activating glutaminase activity, and an elevated ratio of ADP/ATP. It was further confirmed that SIRT5 inhibited the apoptosis and autophagy of bovine mammary epithelial cells through reverse transcription-quantitative PCR, western blot, flow cytometry with Annexin V FITC/PI staining and transmission electron microscopy. In addition, it was also found that the addition of LY294002 or Rapamycin inhibited the PI3K/Akt or mTOR kinase signal, decreasing the apoptosis and autophagy activities of bovine mammary epithelial cells induced by SIRT5-inhibited NH3. In summary, the PI3K/Akt/mTOR signal involved in NH3-induced cell autophagy and apoptosis relies on the regulation of SIRT5. This study provides a new theory for the use of NH3 to regulate bovine mammary epithelial cell apoptosis and autophagy, and provides guidance for improving the health and production performance of dairy cows.

5.
Heliyon ; 10(9): e30603, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726149

ABSTRACT

Objectives: Epithelial ovarian cancer (EOC) is considered to be a prevalent female malignancy with both high incidence and mortality. It is reported that RNA-binding protein 3 (RBMS3) executives a tumor suppressor function in different cancers. This investigation was designed to examine the expression of RBMS3 in epithelial ovarian cancer, the effects on EOC cells, and its connection to immune cells that infiltrate tumors in the EOC microenvironment. Methods: The expression levels of RBMS3 in EOC tissues as well as their correlations with immune cell infiltration and clinical outcome were examined using bioinformatics approaches. Western blotting as well as immunohistochemistry were carried out to determine the protein levels in EOC tissues. In addition, qRT-PCR was employed to look at the expression of the mRNA. The role of RBMS3 in EOC cells was investigated, and an RBMS3 lentiviral vector was developed. The effects of RBMS3 on subcutaneous tumor development, the proliferation protein Ki-67, the tumor angiogenesis indicator CD31, and its function in controlling the tumor immune microenvironment were evaluated by in vivo tests. Results: There was a considerable decrease in RBMS3 expression in EOC tissues, which was linked to a poor prognosis for patients and the infiltration of multiple immune cell. Given immunohistochemical studies, tissues with increased RBMS3 expression had decreased markers of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages, whereas M1 macrophage markers were elevated. RBMS3 appears to suppress the capabilities of proliferating, invading, and migrating in EOC cells according to in vitro tests, whereas tumors overexpressing RBMS3 developed more slowly in syngeneic mouse models. The overexpression of RBMS3 led to a decline in the levels of Ki-67 protein and CD31. Additionally, it showed a negatively correlation with markers of regulatory T cell, myeloid-derived suppressor cell, and M2 macrophage but a positive correlation with markers of M1 macrophage. Conclusions: The findings revealed that elevated RBMS3 expression plays a tumor suppressor role in EOC and was connected to patient survival in EOC. The studies conducted in vitro and in vivo demonstrated a link between RBMS3 expression and the infiltration of certain immune cells, indicating a function for RBMS3 in the immunosuppressive tumor microenvironment and its promising efficiency as a novel target for immunotherapy against EOC.

6.
Sci Rep ; 14(1): 10123, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698194

ABSTRACT

The impact of aging on diabetic retinopathy (DR) remains underestimated. The current study aimed to investigate the association between biological aging and DR, in contrast to chronological age (CA). Using the National Health and Nutrition Survey data from 2005 to 2008. Biological aging was evaluated through the biological age (BA) and phenotypic age (PA), which were calculated from clinical markers. DR was identified in participants with diabetes mellitus (DM) when they exhibited one or more retinal microaneurysms or retinal blot hemorrhages under retinal imaging, with or without the presence of more severe lesions. Survey-weighted multivariable logistic regression was performed, and the regression model was further fitted using restricted cubic splines. The discriminatory capability and clinical utility of the model were evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Based on weighted analyses, of the 3100 participants included in this study, of which 162 had DR. In the adjusted model, BA (odds ratio [OR] = 1.12, 95% CI, 1.06-1.18) and PA (OR = 1.11, 95% CI, 1.07-1.14) were associated with DR, while CA was not significantly (OR = 1.01, 95% CI, 0.99-1.03). Narrowing the analysis to DM participants and adjusting for factors like insulin showed similar results. ROC and DCA analyses indicate that BA/PA predicted DR better than CA and offer greater clinical utility. The positive association between BA/PA and DR was consistent across subgroups despite potential interactions. Biological aging heightens DR risk, with BA/PA showing a stronger association than CA. Our findings underscored the importance of timely anti-aging interventions for preventing DR.


Subject(s)
Aging , Diabetic Retinopathy , Humans , Diabetic Retinopathy/pathology , Male , Female , Middle Aged , Aged , Risk Factors , ROC Curve , Adult , Nutrition Surveys
7.
Article in English | MEDLINE | ID: mdl-38717009

ABSTRACT

BACKGROUND: Pathogenic variants in hnRNPA1 have been reported in amyotrophic lateral sclerosis (ALS) patients. However, studies on hnRNPA1 mutant spectrum and pathogenicity of variants were rare. METHODS: We performed whole exome sequencing of ALS-associated genes and subsequent verification of rare variants in hnRNPA1 in our ALS patients. The hnRNPA1 mutations reported in literature were reviewed and combined with our results to determine the genotype-phenotype relationship. Functional analysis of the novel variant p.G195A was performed in vitro by transfection of mutant hnRNPA1 into 293T cell. RESULTS: Among 207 ALS patients recruited, 3 rare hnRNPA1 variants were identified (mutant frequency 1.45%), including two recurrent mutations (p.P340S and p.G283R), and a novel rare variant p.G195A. In combination with previous reports, there are 27 ALS patients with 15 hnRNPA1 mutations identified. Disease onset age was 47.90 ± 1.52 years with predominant limb onset. The p.P340S mutation caused flail arm syndrome (FAS) in two independent families with extended life expectancy. The newly identified p.G195A mutation, lying at the start of the PrLD ("prion-like" domain)/LCD (low-complexity domain), causes local structural changes in 3D protein prediction. Upon sodium arsenite exposure, mutant hnRNPA1 retained in the nucleus but deficit of cytoplasmic G3BP1-positive stress granule clearance was observed. This is different from the p.P340S mutation which caused both cytoplasmic translocation and stress granule formation. No cytoplasmic TDP-43 translocation was observed. CONCLUSION: Mutations in hnRNPA1 are overall minor in ALS patients. The p.P340S mutation is associated with manifestation of FAS. Mutations in LCD of hnRNPA1 cause stress granule misprocessing.

8.
Small ; : e2402284, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801397

ABSTRACT

2D lamellar nanofiltration membrane is considered to be a promising approach for desalinating seawater/brackish water and recycling sewage. However, its practical feasibility is severely constrained by the lack of durability and stability. Herein, a ternary nanofiltration membrane via a mixed-dimensional assembly of 2D boron nitride nanosheets (BNNS) is fabricated, 1D aramid nanofibers (ANF), and 2D covalent organic frameworks (COF). The abundant 2D and 1D nanofluid channels endow the BNNS/ANF/COF membrane with a high flux of 194 L·m‒2·h‒1. By the synergies of the size sieving and Donnan effect, the BNNS/ANF/COF membrane demonstrates high rejection (among 98%) for those dyes whose size exceeds 1.0 nm. Moreover, the BNNS/ANF/COF membrane also exhibits remarkable durability and mechanical stability, which are attributed to the strong adhesion and interactions between BNNS, ANF, and COF, as well as the superior mechanical robustness of ANF. This work provides a novel strategy to develop robust and durable 2D lamellar nanofiltration membranes with high permeance and selectivity simultaneously.

9.
Heliyon ; 10(9): e30721, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38742075

ABSTRACT

Purpose: To evaluate abnormalities in serum and aqueous humor uric acid (UA) levels in primary angle closure glaucoma (PACG). Methods: Patients with PACG and age-similar and gender-similar controls (patients scheduled for cataract extraction) were enrolled prospectively. Serum UA levels were determined by enzymatic colorimetry; aqueous humor UA levels by Enzyme-Linked ImmunoSorbent Assay. A t-test was used to compare UA levels between PACG patients and controls, with one-way ANOVA used to compare levels across PACG subgroups with differing disease severity. Comparisons between PACG patients and controls were adjusted for systemic and ocular confounding factors using binary logistic regression. Results: In all, 131 PACG patients and 112 controls were included. The serum UA level was 266 ± 69 µmol/L in the PACG group and 269 ± 73 µmol/L in the control group (p = 0.71). The aqueous humor UA level was 35.4 ± 8.2 µmol/L in the PACG group and 53.9 ± 18.6 µmol/L in the control group (p < 0.001). This difference remained significant after adjusting for age, gender, systolic blood pressure, diastolic blood pressure, body mass index, axial length, central corneal thickness, anterior chamber depth, lens thickness, white-to-white distance, corneal endothelial cell density, and serum UA level (odds ratio: 0.88, 95 % confidence interval: 0.83-0.93, p < 0.001). Conclusion: Aqueous humor UA levels differ between PACG patients and controls, but serum UA levels do not. This indicates that local UA plays a role in the pathogenesis of PACG, but systemic UA does not.

10.
Arch Virol ; 169(6): 126, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753067

ABSTRACT

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Subject(s)
Fungal Viruses , Fusarium , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Fusarium/virology , Plant Diseases/microbiology , Plant Diseases/virology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Whole Genome Sequencing , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Cucumis melo/virology , Cucumis melo/microbiology , Amino Acid Sequence , 5' Untranslated Regions , 3' Untranslated Regions , Base Sequence
11.
Food Res Int ; 187: 114316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763629

ABSTRACT

This study investigates the dynamic changes in the aroma profile of Tuo tea during long-term storage, a process not well understood yet critical to the formation of aged tea's unique characteristics. Aroma profiling of Tuo tea samples stored for 2 to 25 years was conducted using sensory evaluation and the HS-SPME/GC × GC-QTOFMS technique, revealing a progressive transition from fresh, fruity, and floral scents to more stale, woody, and herbal notes. Among 275 identified volatiles, 55 were correlated with storage duration (|r| > 0.8, p < 0.05), and 49 differential compounds (VIP > 1, FC > 1.2, FC < 0.833, p < 0.05) were identified across three storage stages (2-4, 5-10, and 13-25 years). Furthermore, theaspirane, eucalyptol, o-xylene, and 1-ethylidene-1H-indene were selected as potential markers of Tuo tea aging, incorporating the implementation of a Random Forest (RF) model. Additionally, our model exhibited high accuracy in predicting the age of Tuo tea within a prediction error range of -2.51 to 2.84 years. This research contributes to a comprehensive understanding of the impact of storage time on tea aroma and aids in the precise identification of tea age.


Subject(s)
Food Storage , Gas Chromatography-Mass Spectrometry , Odorants , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Food Storage/methods , Time Factors , Humans , Camellia sinensis/chemistry , Solid Phase Microextraction
12.
Transl Res ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815898

ABSTRACT

HCC is a malignancy characterized by high incidence and mortality rates. Traditional classifications of HCC primarily rely on tumor morphology, phenotype, and multicellular molecular levels, which may not accurately capture the cellular heterogeneity within the tumor. Current research on HCC using scRNA-seq is predominantly focused on immune and stromal cells. This study integrates scRNA-seq and bulk RNA-seq to spotlight HP as a critical gene. HP is highly expressed in HCC malignant cells and lowly expressed in T cells. Within malignant cells, elevated HP expression interacts with C3, promoting Th1-type responses via the C3/C3AR1 axis. In T cells, down-regulating HP expression favors the expression of Th1 cell-associated marker genes, potentially enhancing Th1-type responses. Consequently, we developed a "HP-promoted Th1 response reclassification" gene set, correlating higher activity scores with improved survival rates in HCC patients. Additionally, four predictive models for neoadjuvant treatment based on HP and C3 expression were established: 1) Low HP and C3 expression with high Th2 cell infiltration; 2) High HP and low C3 expression with high Th2 cell infiltration; 3) High HP and C3 expression with high Th1 cell infiltration; 4) Low HP and high C3 expression with high Th1 cell infiltration. In conclusion, the HP gene selected from the HCC malignant cell subgroup (Malignant_Sub 6) might serve as a potential ally against the tumor by promoting Th1-type immune responses. The establishment of the "HP-promoted Th1 response reclassification" gene set offers predictive insights for HCC patient survival prognosis and neoadjuvant treatment efficacy, providing directions for clinical treatments.

13.
Food Chem ; 452: 139504, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744135

ABSTRACT

Cu(II)-organic acid (fraction I) and Cu(I)-thiol (fraction II) complexes can suppress sulfhydryl off-aromas in wine. This study investigated the impact of light exposure on the protective fractions of Cu of bottled white wine. Fluorescent light-exposed Chardonnay with two initial concentrations of dissolved oxygen (0.5 and 10 mg/L) was stored in different coloured bottles and concentrations of Cu fractions and riboflavin, a photo-initiator at 370-440 nm, were measured during 110 days storage. Light-exposed wines with lower oxygen concentrations resulted in a 100-fold decrease in the Cu fraction I half-life, and a 60-fold decrease for Cu fractions I and II combined. The half-life for Cu fraction I decay during light exposure was extended 30-fold with the use of brown compared to flint glass. Light exposure can rapidly exhaust the protective Cu fractions in wine, and bottles with less light transmission below 440 nm can slow this loss.


Subject(s)
Color , Copper , Light , Oxygen , Wine , Wine/analysis , Oxygen/chemistry , Oxygen/analysis , Copper/chemistry , Copper/analysis , Food Packaging/instrumentation , Food Storage
14.
J Agric Food Chem ; 72(19): 11051-11061, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698723

ABSTRACT

Multiple analytical methodologies allow quantitation of H2S and methanethiol (MeSH) in wine, but confirmation that the determined concentrations are related to perceived off-aromas, or "reductive" faults, is yet to be provided. Fifty white wines underwent sensory evaluation and measurement of free and salt-treated H2S and MeSH concentrations by gas chromatography with sulfur chemiluminescence detection and/or gas detection tubes. The determined concentrations were compared across techniques and different analysis laboratories. Sulfhydryl off-odors in the wines were best described by boiled and rotten egg and natural gas/sewerage/durian aroma attributes. The wines with the highest ratings for both aromas had high concentrations of free H2S, free MeSH, and/or salt-treated MeSH but were unrelated to salt-treated H2S. The free sulfhydryl concentrations and their associated aromas appeared to be suppressed by specific Cu fractions in the wines. This study provides evidence of the relevant measures of reductive aroma compounds and their relation to off-odors and Cu fractions.


Subject(s)
Copper , Odorants , Sulfhydryl Compounds , Wine , Wine/analysis , Odorants/analysis , Sulfhydryl Compounds/analysis , Humans , Copper/analysis , Chromatography, Gas/methods , Taste , Hydrogen Sulfide/analysis , Female , Male , Adult , Oxidation-Reduction , Middle Aged , Smell , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
15.
BMC Public Health ; 24(1): 1352, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769576

ABSTRACT

BACKGROUND: Women living with HIV (WLWH) experience higher rates of intimate partner violence (IPV) compared to women without HIV, but there has been minimal research to date on the impact of the COVID-19 pandemic on the lived experiences of WLWH who are IPV survivors. METHODS: This is a secondary analysis of COVID-19 impact using baseline data from an ongoing, prospective, micro-longitudinal cohort study of HIV care engagement among WLWH who have experienced lifetime IPV. We measured the impact of COVID-19 along key domains (i.e., physical health, day-to-day life, sexual/relationship behavior, substance use, HIV care, mental health, financial status, and having conflict with partners). Using independent t-tests or Fisher's exact tests, and Pearson's chi-squared tests, we compared women with and without ongoing IPV across sociodemographic characteristics, psychiatric disorders, substance use, and COVID-19 impact domains. We then built separate multivariate linear regression models for each of the different COVID-19 impact domains; ongoing IPV exposure was the primary explanatory variable of interest. RESULTS: Enrolled participants (n = 84) comprised a group of women (mean age 53.6y; SD = 9.9) who were living with HIV for a mean 23.3 years (SD = 10), all of whom had experienced lifetime IPV. Among 49 women who were currently partnered, 79.6% (n = 39) reported ongoing IPV. There were no statistically significant differences between those experiencing ongoing IPV and those who were not (or not partnered) in terms of demographic characteristics, substance use, or mental health. In multivariate models, ongoing IPV exposure was not associated with any COVID-19 impact domain. Anxiety and depression, however, were associated with COVID-19-related physical health, HIV care, and relationship conflict. Hispanic ethnicity was significantly associated with COVID-19-related physical health. More severe cocaine and opioid use were also significantly associated with COVID-19-related impact on day-to-day life. CONCLUSIONS: Among this sample of WLWH who are all lifetime IPV-survivors, nearly half had ongoing IPV exposure. The COVID-19 public health emergency period affected WLWH in varied ways, but impacts were most profound for women experiencing concurrent mental health and substance use problems. Findings have important implications for future interventions to improve women's health and social outcomes.


Subject(s)
COVID-19 , HIV Infections , Intimate Partner Violence , Humans , Female , COVID-19/psychology , COVID-19/epidemiology , Intimate Partner Violence/statistics & numerical data , Intimate Partner Violence/psychology , HIV Infections/psychology , HIV Infections/epidemiology , Middle Aged , Prospective Studies , Adult , Longitudinal Studies , Survivors/psychology , Survivors/statistics & numerical data , Substance-Related Disorders/epidemiology , Substance-Related Disorders/psychology
16.
JACS Au ; 4(5): 1954-1965, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818060

ABSTRACT

Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.

17.
Front Pharmacol ; 15: 1377370, 2024.
Article in English | MEDLINE | ID: mdl-38818376

ABSTRACT

Background: Significant progress has been achieved in the management of multiple myeloma (MM) by implementing high-dose therapy and stem cell transplantation. Moreover, the prognosis of patients has been enhanced due to the introduction of novel immunomodulatory drugs and the emergence of new targeted therapies. However, predicting the survival rates of patients with multiple myeloma is still tricky. According to recent researches, platelets have a significant impact in affecting the biological activity of tumors and are essential parts of the tumor microenvironment. Nonetheless, it is still unclear how platelet-related genes (PRGs) connect to the prognosis of multiple myeloma. Methods: We analyzed the expression of platelet-related genes and their prognostic value in multiple myeloma patients in this study. We also created a nomogram combining clinical metrics. Furthermore, we investigated disparities in the biological characteristics, immunological microenvironment, and reaction to immunotherapy, along with analyzing the drug susceptibility within diverse risk groups. Results: By using the platelet-related risk model, we were able to predict patients' prognosis more accurately. Subjects in the high-risk cohort exhibited inferior survival outcomes, both in the training and validation datasets, as compared to those in the low-risk cohort (p < 0.05). Moreover, there were differences in the immunological microenvironments, biological processes, clinical features, and chemotherapeutic drug sensitivity between the groups at high and low risk. Using multivariable Cox regression analyses, platelet-related risk score was shown to be an independent prognostic influence in MM (p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI): 1.467-2.730). Furthermore, the capacity to predict survival was further improved when a combined nomogram was utilized. In training cohort, this outperformed the predictive value of International staging system (ISS) alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611-0.725) to an AUC = 0.721 (95% CI: 0.665-0.778). Conclusion: Our study revealed the potential benefits of PRGs in terms of survival prognosis of MM patients. Furthermore, we verified its potential as a drug target for MM patients. These findings open up novel possibilities for prognostic evaluation and treatment choices for MM.

18.
J Colloid Interface Sci ; 670: 417-427, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38772258

ABSTRACT

Air filtration has become a desirable route for collecting airborne microbes. However, the potential biotoxicity and sterilization of current air filtration membranes often lead to undesired inactivation of captured microbes, which greatly limits microbial non-traumatic transfer and recovery. Herein, we report a gel-confined phase separation strategy to rationally fabricate a fully bio-based filtration membrane (SGFM) using soluble soybean polysaccharide and gelatin. The versatile SGFM features fascinating honeycomb micro-nano architecture and hierarchical interconnected porous structures for microbial capture, and achieves a lower pressure drop, higher interception efficiency (99.3%), and superior microbial survivability than commercial gelatin filtration membranes. Particularly, the water-dissolvable SGFM can greatly simplify the elution and extraction process after bioaerosol sampling, thereby bringing about maximum sample transfer and vigorous recovery of collected microbes. Meanwhile, green capture coupled with ATP bioluminescence endows the SGFM with rapid and quantitative detection capability for airborne microbes. This work may pave the way for designing green protocols for the detection of bioaerosols.


Subject(s)
Air Microbiology , Filtration , Membranes, Artificial , Gelatin/chemistry , Glycine max/chemistry , Glycine max/microbiology , Particle Size , Gels/chemistry , Green Chemistry Technology , Surface Properties , Porosity
19.
Curr Genet ; 70(1): 5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709348

ABSTRACT

The nonsense-mediated mRNA decay (NMD) pathway was initially identified as a surveillance pathway that degrades mRNAs containing premature termination codons (PTCs). NMD is now also recognized as a post-transcriptional regulatory pathway that regulates the expression of natural mRNAs. Earlier studies demonstrated that regulation of functionally related natural mRNAs by NMD can be differential and condition-specific in Saccharomyces cerevisiae. Here, we investigated the regulation of MAC1 mRNAs by NMD in response to copper as well as the role the MAC1 3'-UTR plays in this regulation. MAC1 is a copper-sensing transcription factor that regulates the high-affinity copper uptake system. MAC1 expression is activated upon copper deprivation. We found that MAC1 mRNAs are regulated by NMD under complete minimal (CM) but escaped NMD under low and high copper conditions. Mac1 protein regulated gene, CTR1 is not regulated by NMD in conditions where MAC1 mRNAs are NMD sensitive. We also found that the MAC1 3'-UTR is the NMD targeting feature on the mRNAs, and that MAC1 mRNAs lacking 3'-UTRs were stabilized during copper deprivation. Our results demonstrate a mechanism of regulation for a metal-sensing transcription factor, at both the post-transcriptional and post-translational levels, where MAC1 mRNA levels are regulated by NMD and copper, while the activity of Mac1p is controlled by copper levels.


Subject(s)
3' Untranslated Regions , Copper Transporter 1 , Copper , Gene Expression Regulation, Fungal , Nonsense Mediated mRNA Decay , Nuclear Proteins , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Copper/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Nonsense/genetics
20.
Environ Pollut ; 352: 124082, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697246

ABSTRACT

Antimony (Sb) contamination in certain areas caused by activities such as antimony mining and smelting poses significant risks to human health and ecosystems. In this study, a stable composite material consisting of natural zeolite-supported nanoscale zero-valent iron (Z-ZVI) was successfully prepared. The immobilization effect of Z-ZVI on Sb in contaminated soil was investigated. Experimental results showed that Z-ZVI exhibited superior performance compared to pure nano zero-valent iron (nZVI) in terms of stability, with a lower zeta potential (-25.16 mV) at a pH of 7 and a higher specific surface area (54.54 m2/g). It can be easily applied and dispersed in contaminated soils. Additionally, Z-ZVI demonstrated a more abundant porous structure. After 60 days of treatment with 3% Z-ZVI, the leaching concentration of Sb in the contaminated soil decreased from 1.32 mg/L to 0.31 mg/L (a reduction of 76%), and the concentration of available Sb species decreased from 19.84 mg/kg to 0.71 mg/kg, achieving a fixation efficiency of up to 90%. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis confirmed the effective immobilization of Sb in the soil through reduction of antimonate to antimonite, precipitation, and adsorption processes facilitated by Z-ZVI. Moreover, the addition of Z-ZVI effectively reduced the bioavailability of Sb in the contaminated soil, thereby mitigating its toxicity to earthworms. In conclusion, Z-ZVI can be utilized as a promising material for the safe remediation and antimony and other heavy metal-contaminated soils.


Subject(s)
Antimony , Iron , Soil Pollutants , Soil , Zeolites , Antimony/chemistry , Soil Pollutants/chemistry , Zeolites/chemistry , Iron/chemistry , Soil/chemistry , Environmental Restoration and Remediation/methods , Adsorption , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...