Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.719
Filter
1.
Front Plant Sci ; 15: 1374142, 2024.
Article in English | MEDLINE | ID: mdl-38828222

ABSTRACT

Salt stress is a well-known abiotic constraint that hampers crop productivity, affecting more than 424 million hectares of topsoil worldwide. Applying plant growth regulators externally has proven effective in enhancing crop resilience to salt stress. Previous metabolomics studies revealed an accumulation of Valine-Threonine-Isoleucine-Aspartic acid (VTID) in salt-stressed maize seedlings, suggesting its potential to assist maize adaptation to salt stress. To explore the effectiveness of VTID in enhancing salt tolerance in maize, 10 nM VTID was applied to salt-stressed maize seedlings. The results showed a remarkable 152.29% increase in plant height and a 122.40% increase in fresh weight compared to salt-stressed seedlings. Moreover, the addition of VTID enhanced the activity of antioxidant enzymes, specifically superoxide dismutase (SOD) and catalase (CAT), while reducing the level of malondialdehyde (MDA), a marker of oxidative stress. Additionally, VTID supplementation resulted in a significant increase in osmoregulatory substances such as proline. Metabolomic analysis revealed substantial changes in the metabolite profile of maize seedlings when treated with VTID during salt stress. Differential metabolites (DMs) analysis revealed that the identified DMs primarily belonged to lipids and lipid-like molecules. The receiver operating characteristic curve and linear regression analysis determined a correlation between isodolichantoside and the height of maize seedlings under salt-stress conditions. In conclusion, these findings validate that VTID effectively regulates tolerance in maize seedlings and offers valuable insights into the potential of short peptides for mitigating salt stress.

2.
Bioact Mater ; 38: 1-30, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699243

ABSTRACT

Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.

3.
Environ Res ; 255: 119188, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795950

ABSTRACT

The efficient use of livestock and poultry manure waste has become a global challenge, with microorganisms playing an important role. To investigate the impact of novel ammonifying microorganism cultures (NAMC) on microbial community dynamics and carbon and nitrogen metabolism, five treatments [5% (v/w) sterilized distilled water, Amm-1, Amm-2, Amm-3, and Amm-4] were applied to cow manure compost. Inoculation with NAMC improved the structure of bacterial and fungal communities, enriched the populations of the functional microorganisms, enhanced the role of specific microorganisms, and promoted the formation of tight modularity within the microbial network. Further functional predictions indicated a significant increase in both carbon metabolism (CMB) and nitrogen metabolism (NMB). During the thermophilic phase, inoculated NAMC treatments boosted carbon metabolism annotation by 10.55%-33.87% and nitrogen metabolism annotation by 26.69%-63.11. Structural equation modeling supported the NAMC-mediated enhancement of NMB and CMB. In conclusion, NAMC inoculation, particularly with Amm-4, enhanced the synergistic interaction between bacteria and fungi. This collaboration promoted enzymatic catabolic and synthetic processes, resultng in positive feedback loops with the endogenous microbial community. Understanding these mechanisms not only unravels how ammonifying microorganisms influence microbial communities but also paves the way for the development of the composting industry and global waste management practices.

4.
Research (Wash D C) ; 7: 0371, 2024.
Article in English | MEDLINE | ID: mdl-38798714

ABSTRACT

Poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors (PARPi) are increasingly important in the treatment of ovarian cancer. However, more than 40% of BRCA1/2-deficient patients do not respond to PARPi, and BRCA wild-type cases do not show obvious benefit. In this study, we demonstrated that progesterone acted synergistically with niraparib in ovarian cancer cells by enhancing niraparib-mediated DNA damage and death regardless of BRCA status. This synergy was validated in an ovarian cancer organoid model and in vivo experiments. Furthermore, we found that progesterone enhances the activity of niraparib in ovarian cancer through inducing ferroptosis by up-regulating palmitoleic acid and causing mitochondrial damage. In clinical cohort, it was observed that progesterone prolonged the survival of patients with ovarian cancer receiving PARPi as second-line maintenance therapy, and high progesterone receptor expression combined with low glutathione peroxidase 4 (GPX4) expression predicted better efficacy of PARPi in patients with ovarian cancer. These findings not only offer new therapeutic strategies for PARPi poor response ovarian cancer but also provide potential molecular markers for predicting the PARPi efficacy.

5.
Medicine (Baltimore) ; 103(19): e38144, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728457

ABSTRACT

Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.


Subject(s)
Anoikis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Anoikis/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Prognosis , Single-Cell Analysis/methods , Sequence Analysis, RNA , Protein Interaction Maps/genetics , Female , Male , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods
6.
J Med Internet Res ; 26: e54363, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696251

ABSTRACT

BACKGROUND: Clinical notes contain contextualized information beyond structured data related to patients' past and current health status. OBJECTIVE: This study aimed to design a multimodal deep learning approach to improve the evaluation precision of hospital outcomes for heart failure (HF) using admission clinical notes and easily collected tabular data. METHODS: Data for the development and validation of the multimodal model were retrospectively derived from 3 open-access US databases, including the Medical Information Mart for Intensive Care III v1.4 (MIMIC-III) and MIMIC-IV v1.0, collected from a teaching hospital from 2001 to 2019, and the eICU Collaborative Research Database v1.2, collected from 208 hospitals from 2014 to 2015. The study cohorts consisted of all patients with critical HF. The clinical notes, including chief complaint, history of present illness, physical examination, medical history, and admission medication, as well as clinical variables recorded in electronic health records, were analyzed. We developed a deep learning mortality prediction model for in-hospital patients, which underwent complete internal, prospective, and external evaluation. The Integrated Gradients and SHapley Additive exPlanations (SHAP) methods were used to analyze the importance of risk factors. RESULTS: The study included 9989 (16.4%) patients in the development set, 2497 (14.1%) patients in the internal validation set, 1896 (18.3%) in the prospective validation set, and 7432 (15%) patients in the external validation set. The area under the receiver operating characteristic curve of the models was 0.838 (95% CI 0.827-0.851), 0.849 (95% CI 0.841-0.856), and 0.767 (95% CI 0.762-0.772), for the internal, prospective, and external validation sets, respectively. The area under the receiver operating characteristic curve of the multimodal model outperformed that of the unimodal models in all test sets, and tabular data contributed to higher discrimination. The medical history and physical examination were more useful than other factors in early assessments. CONCLUSIONS: The multimodal deep learning model for combining admission notes and clinical tabular data showed promising efficacy as a potentially novel method in evaluating the risk of mortality in patients with HF, providing more accurate and timely decision support.


Subject(s)
Deep Learning , Heart Failure , Humans , Heart Failure/mortality , Heart Failure/therapy , Male , Female , Prognosis , Aged , Retrospective Studies , Middle Aged , Electronic Health Records , Hospitalization/statistics & numerical data , Hospital Mortality , Aged, 80 and over
7.
Br J Ophthalmol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777389

ABSTRACT

Myopia has long been a global threat to public health. Timely interventions are likely to reduce the risk of vision-threatening complications. There are both established and rapidly evolving therapeutic approaches to slow myopia progression and/or delay its onset. The effective methods for slowing myopia progression include atropine eye-drops, defocus incorporated multiple segments (DIMS) spectacle lenses, spectacle lenses with highly aspherical lenslets target (HALT), diffusion optics technology (DOT) spectacle lenses, red light therapy (RLT), multifocal soft contact lenses and orthokeratology. Among these, 0.05% atropine, HALT lenses, RLT and +3.00 peripheral addition soft contact lenses yield over 60% reduction in myopia progression, whereas DIMS, DOT and MiSight contact lenses demonstrate at least 50% myopia control efficacy. 0.05% atropine demonstrates a more optimal balance of efficacy and safety than 0.01%. The efficacy of 0.01% atropine has not been consistent and requires further validation across diverse ethnicities. Combining atropine 0.01% with orthokeratology or DIMS spectacles yields better outcomes than using these interventions as monotherapies. Increased outdoor time is an effective public health strategy for myopia prevention while recent studies suggest that 0.05% low-concentration atropine and RLT therapy have promising potential as clinical myopia prevention interventions for high-risk groups. Myopia control spectacle lenses, being the least invasive, are safe for long-term use. However, when considering other approaches, it is essential to ensure proper instruction and regular follow-ups to maintain safety and monitor any potential complications. Ultimately, significant advances have been made in myopia control strategies, many of which have shown meaningful clinical outcomes. However, regular use and adequate safety monitoring over extended durations are imperative to foster confidence that can only come from extensive clinical experience.

8.
Virol Sin ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38789039

ABSTRACT

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 hours after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.

9.
Gut Microbes ; 16(1): 2351532, 2024.
Article in English | MEDLINE | ID: mdl-38727248

ABSTRACT

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Subject(s)
Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Prevotella , Renal Insufficiency, Chronic , Signal Transduction , Toll-Like Receptor 4 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/pathology , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Humans , Male , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Prevotella/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Osteogenesis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Feces/microbiology , Inflammasomes/metabolism
10.
Theriogenology ; 225: 152-161, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38805997

ABSTRACT

Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.

11.
J Med Genet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816193

ABSTRACT

BACKGROUND AND AIMS: Variants in ZFYVE19 underlie a disorder characterised by progressive portal fibrosis, portal hypertension and eventual liver decompensation. We aim to create an animal model to elucidate the pathogenic mechanism. METHODS: Zfyve19 knockout (Zfyve19-/- ) mice were generated and exposed to different liver toxins. Their livers were characterised at the tissue, cellular and molecular levels. Findings were compared with those in wild-type mice and in ZFYVE19-deficient patients. ZFYVE19 knockout and knockdown retinal pigment epithelial-1 cells and mouse embryonic fibroblasts were generated to study cell division and cell death. RESULTS: The Zfyve19-/- mice were normal overall, particularly with respect to hepatobiliary features. However, when challenged with α-naphthyl isothiocyanate, Zfyve19-/- mice developed changes resembling those in ZFYVE19-deficient patients, including elevated serum liver injury markers, increased numbers of bile duct profiles with abnormal cholangiocyte polarity and biliary fibrosis. Failure of cell division, centriole and cilia abnormalities, and increased cell death were observed in knockdown/knockout cells. Increased cell death and altered mRNA expression of cell death-related signalling pathways was demonstrated in livers from Zfyve19-/- mice and patients. Transforming growth factor-ß (TGF-ß) and Janus kinase-Signal Transducer and Activator of Transcription 3 (JAK-STAT3) signalling pathways were upregulated in vivo, as were chemokines such as C-X-C motif ligands 1, 10 and 12. CONCLUSIONS: Our findings demonstrated that ZFYVE19 deficiency is a ciliopathy with novel histological features. Failure of cell division with ciliary abnormalities and cell death activates macrophages and may thus lead to biliary fibrosis via TGF-ß pathway in the disease.

12.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 184-189, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814219

ABSTRACT

Gastric cancer (GC) remains one of the most common malignant tumours worldwide, with extremely high morbidity and mortality rates. An in-depth understanding of the pathogenesis of GC is key to the future diagnosis and treatment of GC. In this study, we analysed the differentially expressed genes (DEGs) in gastric carcinoma (GC) through GEO database and their clinical implications, with the aim of providing clinical reference and guidance. We selected the GSE118916 dataset for bioinformatics analysis and identified a total of 3231 DEGs. Keywords, including extracellular region, vesicle, protein digestion and absorption, ECM-receptor interaction, etc., of DEGs can be seen by the GO and KEGG enrichment analysis. The online database determined up-regulated CST1 in GC and some other tumors, as well as a close connection between CST1 with patient prognosis. Subsequently, we collected a number of GC clinical cases and examined the expression of CST1, which was seen to be highly expressed in GC, with a favorable diagnostic effect on the occurrence of GC (P<0.05) and a strong correlation with TNM stage, tumor invasion, tumor diameter and differentiation (P<0.05). In other words, CST1 is closely related to the occurrence and development of GC, and has the potential to be a breakthrough in the diagnosis and treatment of GC in the future.


Subject(s)
Databases, Genetic , Gene Expression Regulation, Neoplastic , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/diagnosis , Humans , Prognosis , Computational Biology/methods , Gene Expression Profiling , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male
13.
Front Cardiovasc Med ; 11: 1342586, 2024.
Article in English | MEDLINE | ID: mdl-38601045

ABSTRACT

Objectives: Prolonged intubation (PI) is a frequently encountered severe complication among patients following cardiac surgery (CS). Solely concentrating on preoperative data, devoid of sufficient consideration for the ongoing impact of surgical, anesthetic, and cardiopulmonary bypass procedures on subsequent respiratory system function, could potentially compromise the predictive accuracy of disease prognosis. In response to this challenge, we formulated and externally validated an intelligible prediction model tailored for CS patients, leveraging both preoperative information and early intensive care unit (ICU) data to facilitate early prophylaxis for PI. Methods: We conducted a retrospective cohort study, analyzing adult patients who underwent CS and utilizing data from two publicly available ICU databases, namely, the Medical Information Mart for Intensive Care and the eICU Collaborative Research Database. PI was defined as necessitating intubation for over 24 h. The predictive model was constructed using multivariable logistic regression. External validation of the model's predictive performance was conducted, and the findings were elucidated through visualization techniques. Results: The incidence rates of PI in the training, testing, and external validation cohorts were 11.8%, 12.1%, and 17.5%, respectively. We identified 11 predictive factors associated with PI following CS: plateau pressure [odds ratio (OR), 1.133; 95% confidence interval (CI), 1.111-1.157], lactate level (OR, 1.131; 95% CI, 1.067-1.2), Charlson Comorbidity Index (OR, 1.166; 95% CI, 1.115-1.219), Sequential Organ Failure Assessment score (OR, 1.096; 95% CI, 1.061-1.132), central venous pressure (OR, 1.052; 95% CI, 1.033-1.073), anion gap (OR, 1.075; 95% CI, 1.043-1.107), positive end-expiratory pressure (OR, 1.087; 95% CI, 1.047-1.129), vasopressor usage (OR, 1.521; 95% CI, 1.23-1.879), Visual Analog Scale score (OR, 0.928; 95% CI, 0.893-0.964), pH value (OR, 0.757; 95% CI, 0.629-0.913), and blood urea nitrogen level (OR, 1.011; 95% CI, 1.003-1.02). The model exhibited an area under the receiver operating characteristic curve (AUROC) of 0.853 (95% CI, 0.840-0.865) in the training cohort, 0.867 (95% CI, 0.853-0.882) in the testing cohort, and 0.704 (95% CI, 0.679-0.727) in the external validation cohort. Conclusions: Through multicenter internal and external validation, our model, which integrates early ICU data and preoperative information, exhibited outstanding discriminative capability. This integration allows for the accurate assessment of PI risk in the initial phases following CS, facilitating timely interventions to mitigate adverse outcomes.

14.
JGH Open ; 8(4): e13055, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628386

ABSTRACT

Background and Aim: The microsurface structure reflects the degree of damage to the glands, which is related to the invasion depth of early gastric cancer. To evaluate the diagnostic value of quantitative microsurface structure analysis for estimating the invasion depth of early gastric cancer. Methods: White-light imaging and narrow-band imaging (NBI) endoscopy were used to visualize the lesions of the included patients. The area ratio and depth-predicting score (DPS) of each patient were calculated; meanwhile, each lesion was examined by endoscopic ultrasonography (EUS). Results: Ninety-three patients were included between 2016 and 2019. Microsurface structure is related to the histological differentiation and progression of early gastric cancer. The receiver operating characteristic curve showed that when an area ratio of 80.3% was used as a cut-off value for distinguishing mucosal (M) and submucosal (SM) type 0-II gastric cancers, the sensitivity, specificity, and accuracy were 82.9%, 80.2%, and 91.6%, respectively. The accuracies for distinguishing M/SM differentiated and undifferentiated early gastric cancers were 87.4% and 84.8%, respectively. The accuracy of EUS for distinguishing M/SM early gastric cancer was 74.9%. DPS can only distinguish M-SM1 (SM infiltration <500 µm)/SM (SM infiltration ≥500 µm) with an accuracy of 83.8%. The accuracy of using area ratio for distinguishing 0-II early gastric cancers was better than those of using DPS and EUS (P < 0.05). Conclusion: Quantitative analysis of microsurface structure can be performed to assess M/SM type 0-II gastric cancer and is expected to be effective for judging the invasion depth of gastric cancer.

15.
Burns ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38641501
16.
Health Inf Sci Syst ; 12(1): 29, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38584761

ABSTRACT

Purpose: To explore the biliary and duodenal microbiota features associated with the formation and recurrence of choledocholithiasis (CDL). Methods: We prospectively recruited patients with primary (P-CDL, n = 29) and recurrent CDL (R-CDL, n = 27) for endoscopic retrograde cholangiopancreatography (ERCP). Duodenal mucosa (DM), bile and bile duct stones (BDS) samples were collected in P- and R-CDL patients. DM samples were also collected in 8 healthy controls (HC). The microbiota profile analysis was performed with 16S rRNA gene sequencing. Results: Short-course antibiotic application before ERCP showed no significant effects in alpha and beta diversities of the biliary and duodenal microbiota in CDL. Alpha diversity showed no difference between DM and bile samples in CDL. The duodenal microbial richness and diversity was lower in both P- and R-CDL than HC. The biliary microbiota composition showed a high similarity between P- and R-CDL. Fusobacterium and Enterococcus were higher abundant in DM, bile, and BDS samples of R-CDL than P-CDL, as well as Escherichia and Klebsiella in bile samples of R-CDL. The enriched duodenal and biliary bacteria in CDL were closely associated with cholecystectomy, inflammation and liver dysfunction. The bile-associated microbiota of R-CDL expressed enhanced capacity of D-glucuronide and D-glucuronate degradation, implicating an elevated level of ß-glucuronidase probably produced by enriched Escherichia and Klebsiella in bile. Conclusions: The duodenal microbiota was in an imbalance in CDL. The duodenal microbiota was probably the main source of the biliary microbiota and was closely related to CDL formation and recurrence. Enterococcus, Fusobacterium, Escherichia and Klebsiella might contribute to CDL recurrence. Clinical trials: The study was registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/index.html, ChiCTR2000033940). Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-023-00267-2.

17.
Heliyon ; 10(8): e29218, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628758

ABSTRACT

In recent decades, substantial advancements in epigenetics have unveiled a profound understanding of its mechanisms in tumorigenesis and have offered promising strategies for epigenetic therapy in cancer patients. In our study, through bioinformatics analysis, we discovered a significant downregulation and hypermethylation of FOXI2 in clear cell renal cell carcinoma (ccRCC), while the expression in chromophobe cell carcinoma (chRCC) exhibited the opposite trend. Moreover, we established a strong correlation between FOXI2 expression levels and the prognosis of ccRCC. Gene enrichment analysis and cell function experiments unequivocally demonstrate that FOXI2 possesses the capability to induce cell cycle arrest and inhibit cell proliferation. Our research findings demonstrate that the expression of FOXI2 in ccRCC is under the regulation of promoter hypermethylation. Furthermore, in vitro experiments have conclusively shown that the overexpression of FOXI2 induces cell cycle arrest and inhibits cell proliferation.

18.
Front Cell Infect Microbiol ; 14: 1381537, 2024.
Article in English | MEDLINE | ID: mdl-38633748

ABSTRACT

Background: Toxoplasma gondii (T. gondii) is a significant protozoan pathogen among food animals. Despite the threat to public health by T. gondii infections, there's limited understanding of its seroprevalence and trends in food animals across mainland China. This study aimed to estimate the seroprevalence of T. gondii infections among swine, sheep, goats, chickens, and cattle in mainland China from 2010 to 2023. Methods: We searched cross-sectional studies published between 2010 and 2023 that reported the prevalence of T. gondii in food animals from databases including PubMed, Embase, Web of Science, China Biology Medicine Disc (CBM), China National Knowledge Infrastructure (CNKI), Wanfang data, and the China Science and Technology Journal Database (CQVIP). We performed subgroup analyses to explore the impact of different factors on the seroprevalence of T. gondii. Pooled estimates of T. gondii seroprevalence were calculated with a random-effects model. Results: An analysis of 184 studies involving 211985 animals revealed a T. gondii overall seroprevalence of 15.3% (95% CI: 13.1-17.8). Although the seroprevalence of food animals across mainland China was relatively stable from 2010 to 2023, notable variations were observed across different animal types and regions (P < 0.01), along with changes in geographical distribution. Sample type, detection method, animal age, and history of abortion were identified as key risk factors for T. gondii seroprevalence. Conclusion: The study conducted a meta-analysis on the seroprevalence of T. gondii in mainland China's Food Animals from 2010 to 2023, and identified key risk factors. These findings advance our understanding of T. gondii infection dynamics, offering critical insights for developing control strategies and guiding public health policies.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Pregnancy , Female , Animals , Swine , Cattle , Sheep , Seroepidemiologic Studies , Cross-Sectional Studies , Chickens , Risk Factors , China/epidemiology , Goats , Antibodies, Protozoan
19.
J Hazard Mater ; 470: 134293, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615646

ABSTRACT

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Subject(s)
Astacoidea , Gastrointestinal Microbiome , Neonicotinoids , Nitro Compounds , Transcriptome , Water Pollutants, Chemical , Animals , Neonicotinoids/toxicity , Astacoidea/drug effects , Astacoidea/genetics , Gastrointestinal Microbiome/drug effects , Nitro Compounds/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Oxidative Stress/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism
20.
J Hepatocell Carcinoma ; 11: 737-746, 2024.
Article in English | MEDLINE | ID: mdl-38654891

ABSTRACT

Aim: This study aimed to explore the effects of the triglyceride-glucose (TyG) index on hepatocellular carcinoma (HCC) development in patients with hepatitis B virus (HBV)-related liver cirrhosis (LC). Methods: A total of 242 patients with HBV-related LC were enrolled and followed-up. Logistic regression analysis was performed to investigate risk factors for HCC. Results: The median follow-up time was 37 months (range: 6-123 months). At the end of the follow-up, 11 (11.3%) patients with compensated cirrhosis (CC) and 45 (31.0%) with decompensated cirrhosis (DC) developed HCC. The TyG index was higher in the HCC group than in the non-HCC group (P=0.05). Univariate analysis showed that age (P<0.01), DC (P<0.01), TyG index (P=0.08), albumin (ALB) level (P=0.05), platelet (PLT) count (P<0.01), and HBV DNA positivity (P<0.01) were associated with HCC development. Multivariate analysis revealed that age, DC, TyG index, PLT count, and HBV DNA positivity were independent risk factors for HCC development (P=0.01, 0.01, <0.01, 0.05, and <0.01, respectively). For patients with DC, multivariate logistic regression analysis revealed that age, TyG index, and HBV DNA positivity were independent risk factors for HCC development (all P<0.05). A new model encompassing age, DC, TyG, PLT, and positive HBV DNA had optimal predictive accuracy in patients with DC or CC, with a cutoff value of 0.197. The areas under the receiver operating characteristic curves (AUROCs) of the model for predicting HCC development in patients with LC, DC, and CC were 0.778, 0.721, and 0.783, respectively. Conclusion: TyG index was identified as an independent risk factor for HCC development in patients with LC.

SELECTION OF CITATIONS
SEARCH DETAIL
...