Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(8): 112975, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37573508

ABSTRACT

In bacteria, archaea, protists, and plants, the hydrolysis of pyrophosphate (PPi) by inorganic pyrophosphatase (PPase) can, under stress conditions, substitute for ATP-driven proton flux to generate a proton gradient and induce luminal acidification. However, this strategy is considered to be lost in eukaryotes. Here, we report that LHPP, a poorly understood PPase that exhibits activity at acidic pH, is primarily expressed in astrocytes and partly localized on lysosomal membranes. Under stress conditions, LHPP is recruited to vacuolar ATPase (V-ATPase) and facilitates V-ATPase-dependent proton transport and lysosomal acidification by hydrolyzing PPi. LHPP knockout (KO) mice have no discernable phenotype but are resilient to chronic-stress-induced depression-like behaviors. Mechanistically, LHPP deficiency prevents lysosome-dependent degradation of C/EBPß and induces the expression of a group of chemokines that promote adult neurogenesis. Together, these findings suggest that LHPP is likely to be a therapeutic target for stress-related brain disease.

2.
Front Aging Neurosci ; 14: 896522, 2022.
Article in English | MEDLINE | ID: mdl-36016856

ABSTRACT

Amyloid-ß (Aß) derived from amyloid precursor protein (APP) hydrolysis is acknowledged as the predominant hallmark of Alzheimer's disease (AD) that especially correlates to genetics and daily activities. In 2019, meta-analysis of AD has discovered five new risk loci among which A Disintegrin and Metalloproteinase with Thrombospondin motifs 1 (ADAMTS1) has been further suggested in 2021 and 2022. To verify the association, we re-sequenced ADAMTS1 of clinical AD samples and subsequently identified a novel rare variant c.-2067A > C with watchable relevance (whereas the P-value was not significant after adjustment). Dual-luciferase assay showed that the variant sharply stimulated ADAMTS1 expression. In addition, ADAMTS1 was also clearly induced by pentylenetetrazol-ignited neuronal activity and enriched environment (EE). Inspired by the above findings, we investigated ADAMTS1's role in APP metabolism in vitro and in vivo. Results showed that ADAMTS1 participated in APP hydrolysis and consequently decreased Aß generation through inhibiting ß-secretase-mediated cleavage. In addition, we also verified that the hippocampal amyloid load of AD mouse model was alleviated by the introduction of ADAMTS1, and thus spatial cognition was restored as well. This study revealed the contribution of ADAMTS1 to the connection of genetic and acquired factors with APP metabolism, and its potential in reducing hippocampal amyloid and consequent risk of AD.

3.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: mdl-35938532

ABSTRACT

Dysregulation of excitatory amino acid transporter 2 (EAAT2) contributes to the development of temporal lobe epilepsy (TLE). Several strategies for increasing total EAAT2 levels have been proposed. However, the mechanism underlying the oligomeric assembly of EAAT2, impairment of which inhibits the formation of functional oligomers by EAAT2 monomers, is still poorly understood. In the present study, we identified E3 ubiquitin ligase AMFR as an EAAT2-interacting protein. AMFR specifically increased the level of EAAT2 oligomers rather than inducing protein degradation through K542-specific ubiquitination. By using tissues from humans with TLE and epilepsy model mice, we observed that AMFR and EAAT2 oligomer levels were simultaneously decreased in the hippocampus. Screening of 2386 FDA-approved drugs revealed that the most common analgesic/antipyretic medicine, acetaminophen (APAP), can induce AMFR transcriptional activation via transcription factor SP1. Administration of APAP protected against pentylenetetrazol-induced epileptogenesis. In mice with chronic epilepsy, APAP treatment partially reduced the occurrence of spontaneous seizures and greatly enhanced the antiepileptic effects of 17AAG, an Hsp90 inhibitor that upregulates total EAAT2 levels, when the 2 compounds were administered together. In summary, our studies reveal an essential role for AMFR in regulating the oligomeric state of EAAT2 and suggest that APAP can improve the efficacy of EAAT2-targeted antiepileptic treatments.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Acetaminophen , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Humans , Mice , Receptors, Autocrine Motility Factor/metabolism , Seizures/chemically induced , Seizures/drug therapy
4.
Am J Physiol Cell Physiol ; 316(3): C393-C403, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30624983

ABSTRACT

Dopamine regulates gastrointestinal mucosal barrier. Mucus plays important roles in the protection of intestinal mucosa. Here, the regulatory effect of dopamine on rat colonic mucus secretion was investigated. RT-PCR, immunofluorescence, Periodic Acid-Schiff reagent assay, Alcian blue-Periodic Acid-Schiff staining, and enzyme-linked immunosorbent assay were used to observe the expression of dopamine receptor and the direct effect of dopamine on the colonic mucus. Mice injected intraperitoneally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) destroying enteric dopamine (DA) neurons, rats microinjected with 6-hydroxydopamine (6-OHDA) into the bilateral substantia nigra damaging central dopaminergic neurons, and dopamine D5 receptor-downregulated transgenic mice were used to detect the effect of endogenous enteric dopamine or dopamine receptors on distal colonic mucus. Our results indicated that D5 immunoreactivity was widely distributed on the colonic goblet cells. Dopamine dose-dependently increased rat distal colonic mucus secretion in vitro. D1-like receptor antagonist SCH23390 inhibited dopamine (1 µΜ)-induced distal colonic mucus secretion. D1-like receptor agonist SKF38393 promoted mucin 2 (MUC2) secretion and increased the intracellular cAMP level of colonic mucosa. D5 receptor-downregulated transgenic mice showed a decreased colonic MUC2 content. MPTP-treated mice exhibited lower colonic dopamine content and decreased colonic mucus content. 6-OHDA rats had an increase in the dopamine content in colonic mucosa but decreases in the protein levels of D1 and D5 receptors and MUC2 content in the colonic mucosa. These findings reveal that dopamine is able to promote distal colonic mucus secretion through the D5 receptor, which provides important evidence to better understand the possible role of dopamine in the colonic mucosal barrier.


Subject(s)
Colon/metabolism , Dopamine/metabolism , Intestinal Mucosa/metabolism , Mucus/metabolism , Receptors, Dopamine D5/metabolism , Animals , Benzazepines/pharmacology , Colon/drug effects , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Intestinal Mucosa/drug effects , Male , Mice , Mice, Inbred C57BL , Mucin-2/metabolism , Mucus/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...