Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38673242

ABSTRACT

The grain selection process in a Z-form selector for Ni-based single-crystal superalloy was simulated using a macro-scale ProCAST software (2013 version) coupled CAFE module combined with an experiment to investigate the grain selection procedure and mechanism with different grain positions and crystal orientation relationships. A non-stationary solidification process was found in the Z-form selector, and the liquid-solid (L-S) interface was tilted in the same direction as the selector channel during directional solidification. Given that the grain boundary was parallel to the Z-form selector, the overgrowth rate of the bi-crystal in the selector channel was very low. The initial position of the bi-crystal in the selector channel has a greater effect on the overgrowth rate than the effects of primary and secondary orientations. The grain selection was a result of the coupling of the competitive grain growth effect and geometrical restriction effect. Finally, the selection grain mechanism within the Z-form selector was discussed, coalescing the temperature field and the grain competition growth mechanism.

2.
Polymers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399824

ABSTRACT

In this study, organic polymer polyurethane grouting materials were prepared using isocyanate and polyether polyol as the main agents and various additives, the slurry coagulation process was investigated, and the mechanical properties of the polymer samples were tested to explore the influence of the density and soaking time of the polymer on the strength of the samples. The microstructure of the polymer was observed via electron microscopy, and relying on image analysis software, the structural parameters of the polymer cell were analyzed and calculated; the model equation between density and yield strength was established based on the strength model of porous materials developed by Gibson and Ashby. The results show that the initial viscosity and gel time of the polyurethane slurry decrease with the increase of the initial temperature, and the viscosity changes abruptly when the slurry reaches the gel point. The mechanical properties of the polymer increased with increasing density and decreased with increasing soaking time. The interior of the polymer is a porous structure and the pores are approximately spherical; the higher the density of the polymer material, the more uniform the stress distribution of the material, and the higher the percentage of the matrix, which in turn leads to better mechanical properties of the material. The diameter of the polymer cell is negatively correlated with the density, and the model established based on the microscopic parameters of the cell can better predict the yield strength of the polymer. This study helps to deepen the understanding of the microstructure and mechanical properties of polyurethane and provides a certain reference for the application of polyurethane in underground mine reinforcement engineering.

3.
Polymers (Basel) ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36236156

ABSTRACT

Trapped space charges in epoxy composite distort the electric field, which will induce the failure of the insulation system, and nano graphene oxide may inhibit the curing behavior of epoxy resin matrix. This paper analyzes how the two interfaces affect the electron traps of epoxy resin/graphene oxide systems with different nanofiller contents. The electron affinity energy of epoxy resin matrix and nano filler molecules in the epoxy resin/graphene oxide system is calculated based on quantum chemistry. It is found that nano graphene oxide has a strong electron affinity energy and is easier to capture electrons. Then the influence of the interface formed by the epoxy resin matrix and the nano graphene oxide on the electron transfer ability is calculated. The epoxy resin matrix contains the electron transfer ability of interfaces formed by nano graphene oxide and the molecular chain is different from that of unreacted molecules. The results can provide a reference for the modification of epoxy resin/graphene oxide nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...