Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 13(4): 453-460, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38552169

ABSTRACT

The assembly of long-range aligned structures of two-dimensional nanosheets (2DNSs) in polymer nanocomposites (PNCs) is in urgent need for the design of nanoelectronics and lightweight energy-storage materials of high conductivity for electricity or heat. These 2DNS are thin and exhibit thermal fluctuations, leading to an intricate interplay with polymers in which entropic effects can be exploited to facilitate a range of different assemblies. In molecular dynamics simulations of experimentally studied 2DNSs, we show that the layer-forming crystallization of 2DNSs is programmable by regulating the strengths and ranges of polymer-induced entropic depletion attractions between pairs of 2DNSs, as well as between single 2DNSs and a substrate surface, by exclusively tuning the temperature and size of the 2DNS. Enhancing the temperature supports the 2DNS-substrate depletion rather than crystallization of 2DNSs in the bulk, leading to crystallized layers of 2DNSs on the substrate surfaces. On the other hand, the interaction range of the 2DNS-2DNS depletion attraction extends further than the 2DNS-substrate attraction whenever the 2DNS size is well above the correlation length of the polymers, which results in a nonmonotonic dependence of the crystallization layer on the 2DNS size. It is demonstrated that the depletion-tuned crystallization layers of 2DNSs contribute to a conductive channel in which individual lithium ions (Li ions) migrate efficiently through the PNCs. This work provides statistical and dynamical insights into the balance between the 2DNS-2DNS and 2DNS-substrate depletion interactions in polymer-2DNS composites and highlights the possibilities to exploit depletion strategies in order to engineer crystallization processes of 2DNSs and thus to control electrical conductivity.

2.
ACS Nano ; 17(19): 19323-19337, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37769163

ABSTRACT

Insulating thermally conductive polymer composites are in great demand in integrated-circuit packages, for efficient heat dissipation and to alleviative short-circuit risk. Herein, the continuous oriented hexagonal boron nitride (h-BN) frameworks (o-BN@SiC) were prepared via self-assembly and in situ chemical vapor infiltration (CVI) interface welding. The insulating o-BN@SiC/epoxy (o-BN@SiC/EP) composites exhibited enhanced thermal conductivity benefited from the CVI-SiC-welded BN-BN interface. Further, multiscale simulation, combining first-principles calculation, Monte Carlo simulation, and finite-element simulation, was performed to quantitatively reveal the effect of the welded BN-BN interface on the heat transfer of o-BN@SiC/EP composites. Phonon transmission in solders and phonon-phonon coupling of filler-solder interfaces enhanced the interfacial heat transfer between adjacent h-BN microplatelets, and the interfacial thermal resistance of the dominant BN-BN interface was decreased to only 3.83 nK·m2/W from 400 nK·m2/W, plunging by over 99%. This highly weakened interfacial thermal resistance greatly improved the heat transfer along thermal pathways and resulted in a 26% thermal conductivity enhancement of o-BN@SiC/EP composites, compared with physically contacted oriented h-BN/EP composites, at 15 vol % h-BN. This systematic multiscale simulation broke through the barrier of revealing the heat transfer mechanism of polymer composites from the nanoscale to the macroscale, which provided rational cognition about the effect of the interfacial thermal resistance between fillers on the thermal conductivity of polymer composites.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37368247

ABSTRACT

WTe2, a low-symmetry transition metal dichalcogenide, has broad prospects in functional device applications due to its excellent physical properties. When WTe2 flake is integrated into practical device structures, its anisotropic thermal transport could be affected greatly by the substrate, which matters a lot to the energy efficiency and functional performance of the device. To investigate the effect of SiO2/Si substrate, we carried out a comparative Raman thermometry study on a 50 nm-thick supported WTe2 flake (with κzigzag = 62.17 W·m-1·K-1 and κarmchair = 32.93 W·m-1·K-1), and a suspended WTe2 flake of similar thickness (with κzigzag = 4.45 W·m-1·K-1, κarmchair = 4.10 W·m-1·K-1). The results show that the thermal anisotropy ratio of supported WTe2 flake (κzigzag/κarmchair ≈ 1.89) is about 1.7 times that of suspended WTe2 flake (κzigzag/κarmchair ≈ 1.09). Based on the low symmetry nature of the WTe2 structure, it is speculated that the factors contributing to thermal conductivity (mechanical properties and anisotropic low-frequency phonons) may have affected the thermal conductivity of WTe2 flake in an uneven manner when supported on a substrate. Our findings could contribute to the 2D anisotropy physics and thermal transport study of functional devices based on WTe2 and other low-symmetry materials, which helps solve the heat dissipation problem and optimize thermal/thermoelectric performance for practical electronic devices.

4.
J Colloid Interface Sci ; 619: 369-376, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398767

ABSTRACT

Materials with adjustable wide-ranging thermal conductivity are desired to tackle the problem of thermal management for electronic devices operating in an extended range of temperature. In this study, graphene aerogels (GAs) are fabricated and transformed from thermal insulators to thermal conductors by high-temperature annealing. The highest through-plane and in-plane thermal conductivity of annealed GA reaches 3.3 and 96 W/m·K, respectively, under 95% compressive strain. Using the annealed GA as thermal interface material leads to superior performance than commercially available products that have higher through-plane thermal conductivity in dissipating heat for high-power electronic devices (e.g., LED lamp). Furthermore, due to excellent elasticity, the thermal resistance of annealed GAs can be reversibly tuned about six-fold by compressive strain. This paves a novel venue in designing thermal management system for devices, which not only need excellent heat dissipation but also good thermal insulation at various operating environments.

5.
J Colloid Interface Sci ; 608(Pt 3): 2407-2413, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34753625

ABSTRACT

Both high through-plane thermal conductivity and low elastic modulus can reduce thermal interface resistance, which is important for thermal interface materials. The internal porous structure of graphene aerogel (GA) makes it to have a low elastic modulus, which results in its good compressibility. Also, the network structure of GA provides thermal conducting paths, which improve the through-plane thermal conductivity of GA. Annealing GA at 3000 °C helps to remove oxygen-containing functional groups and reduces defects. This greatly improves its crystallinity, which further leads to the improvement of its through-plane thermal conductivity and it has a low modulus of 1.37Mpa. The through-plane thermal conductivity of GA annealed at 3000 °C (GA-3000) was improved as the pressure increased and got to 2.93 W/ m K at a pressure of 1.13 MPa, which is 30 times higher than other graphene-based thermal interface materials (TIMs). These discoveries offer a novel approach for preparing excellent TIMs.

6.
ACS Appl Mater Interfaces ; 13(22): 26256-26263, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34028249

ABSTRACT

Multilayer graphene has been employed as a functional material for tuning the emissivity in mid- and long-infrared range, which shows great potential for various applications, such as radiative cooling and thermal camouflage. However, the stability of the multilayer graphene is not sufficient for practical applications yet. Even though it is reported that the integrity of the multilayer graphene is compromised by ion intercalation, the detailed mechanism is rather unclear. Here, a set of ionic liquids is deployed as sources of electronic charges for tuning the emissivity of multilayer graphene. It is found that the emissivity modulator using 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([EMIm]NTf2) as the ionic liquid provides a modulation depth of about 0.52 (i.e., about 21% larger than the best-reported value) while maintaining a reasonable device lifetime. The microscopic structures of the multilayer graphene in an operational and failure modulator are investigated by scanning electron microscopy, Raman spectroscopy, X-ray diffraction. The results indicate that the modulation depth of emissivity is negatively correlated with the initial voltage, which represents the reaction potential between the ionic liquid and graphene. Furthermore, not only the chemical reactivity but also the size of both anion and cation in the ionic liquids play important roles in maintaining stability of the modulator. Therefore, a set of criteria (e.g., low initial voltage and small size of anion and cation) is proposed to select proper ionic liquids for emissivity modulation. This not only sheds light on the underlying physics of the modulator but also promotes its practical applications.

7.
Nanoscale ; 11(48): 23498-23501, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31777899

ABSTRACT

Removal of expression of concern for 'Controllable 2H-to-1T' phase transition in few-layer MoTe2' by Yuan Tan et al., Nanoscale, 2018, 10, 19964-19971.

8.
Nanoscale ; 11(46): 22440-22445, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31746893

ABSTRACT

High-throughput growth of large size transition metal dichalcogenide (TMD) single crystals is an important challenge for their applications in the next generation electronic and optoelectronic integration devices. Here we report the high-throughput growth of submillimeter monolayer TMD single crystals by two-stage space confined chemical vapor deposition, where the nucleation density of TMD crystals is significantly decreased for the growth of large size monolayer crystals by the space confinement effect. Moreover, high-throughput growth of submillimeter TMD crystals is also achieved by stacking the substrates along the perpendicular direction to the flow of the reaction gases. The mobilities of the TMD materials produced in this way are up to 1.2, 17.0 and 25.0 cm2 (V s)-1 for monolayer WS2, WSe2 and MoS2 single crystals, respectively. The results demonstrate that two-stage space confined growth is a highly promising method for high-throughput fabrication of high-quality submillimeter monolayer TMD single crystals, which will pave a new pathway to large-scale production of TMD-based electronic and optoelectronic devices.

9.
Nanoscale ; 10(42): 19964-19971, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30349910

ABSTRACT

Most two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit more than one structural phase, leading to a number of remarkable physics and potential device applications beyond graphene. Here, we demonstrated a feasible route to trigger 2H-to-1T' phase transition in few-layer molybdenum ditelluride (MoTe2) by laser irradiation. The effects of laser power and irradiation duration were systematically studied in this study, revealing the accumulated heating effect as the main driving force for such a phase transition. By carefully adjusting laser power and irradiation time, we could control the structural phases of MoTe2 as 2H, 2H + 1T', and 1T'. After thermal annealing at a rather low temperature, the laser-irradiated MoTe2 showed a completely suppressed 2H component and a more stabilized 1T' phase, demonstrating that the microscopic origin of the irreversible 2H-to-1T' phase transition is the formation of Te vacancies in MoTe2 due to laser local instantaneous heating. Our findings together with the unique properties of MoTe2 pave the way for high-performance nanoelectronics and optoelectronics based on 2D TMDs and their heterostructures.

10.
Nano Lett ; 18(2): 675-681, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29262252

ABSTRACT

Controllable synthesizing of one-dimensional-two-dimensional (1D-2D) heterostructures and tuning their atomic and electronic structures is nowadays of particular interest due to the extraordinary properties and potential applications. Here, we demonstrate the temperature-induced phase-controlled growth of 1D Mo6Te6-2D MoTe2 heterostructures via molecular beam epitaxy. In situ scanning tunneling microscopy study shows 2D ultrathin films are synthesized at low temperature range, while 1D nanowires gradually arise and dominate as temperature increasing. X-ray photoelectron spectroscopy confirms the good stoichiometry and scanning tunneling spectroscopy reveals the semimetallic property of grown Mo6Te6 nanowires. Through in situ annealing, a phase transition from 2D MoTe2 to 1D Mo6Te6 is induced, thus forming a semimetal-semiconductor junction in atomic level. An upward band bending of 2H-MoTe2 is caused by lateral hole injection from Mo6Te6. The work suggests a new route to synthesize 1D semimetallic transition metal chalcogenide nanowires, which could serve as ultrasmall conducting building blocks and enable band engineering in future 1D-2D heterostructure devices.

11.
J Nanosci Nanotechnol ; 15(6): 4591-5, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26369085

ABSTRACT

The graphene, as a one atomic-layer material, is very sensitive to the environment and easy to be polluted. Here, we propose an in situ fabrication and characterization method for graphene electronic devices using the Dual Beam system. Instead of the conventional photo/e-beam lithography, plasma etching and lift-off techniques, the focused ion beam (FIB) is employed to pattern the graphene and the e-beam induced deposition of platinum (Pt) is adopted to fabricate the electrodes. Using the nano-probes in the specimen chamber, we obtained the typical electronic bipolar behavior of graphene in situ both with the Pt/graphene contact and the nano-probes/graphene direct contact. In the whole process of the fabrication and characterization, the graphene sample is kept in high vacuum condition all the time.

12.
Sci Rep ; 5: 12198, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26195033

ABSTRACT

A so called all-carbon based graphene field effect transistor (GFET) in which the electrodes are composed of graphite-like nano-sheets instead of metals in the traditional devices is fabricated by one-step e-beam direct writing (EBDW). It is also found that the graphite-like nano-sheets in electrodes are perpendicular to the channel graphene, which is confirmed by the transmission electron microscopy (HRTEM). The one-step fabrication of the carbonaceous electrodes is more convenient and lower-cost comparing to the preparation of traditional metal electrodes and can be applied to many other nano-electronic devices.

13.
Nat Commun ; 6: 6485, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25761440

ABSTRACT

Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm(2) V(-1) s(-1) after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 982-5, 2014 Apr.
Article in Chinese | MEDLINE | ID: mdl-25007613

ABSTRACT

In order to study the influencing factors on Raman spectroscopy, we research a series of comparative Raman spectroscopy of multi-walled carbon nanotubes (MWCNT) with different tube diameter and length. The results suggest that the G peak and D peak of MWCNT are all red-shifted as compared to that of polycrystalline graphite; In the same conditions, the peak intensity (G peak and D peak) is directly proportional to the diameter of the MWCNT, and inversely proportional to the length of the MWCNT; G peak frequency shift is closely related to the MWCNT diameter and length, which are inversely proportional to the diameter (with identical results of the single-walled carbon nanotube radial breathing modes) and direct proportional to the length. While, the influences of the diameter and length on D peak frequency shift are weak, and future analysis for the reason of this kind of phenomenon is as follows. Subsequently, we investigated the relation between D peak frequency shift and MWCNT aspect ratio, the relationship between G peak frequency shift and aspect ratio is nearly linear increase. Using the same analysis method, we plotted the different graphs of G peak and D peak intensity vs the aspect ratio of MWCNT, respectively. As the expected, the linear degression relation are existent in the two relationships.

15.
ACS Nano ; 8(5): 5323-9, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24785254

ABSTRACT

We report effective and stable electron doping of monolayer molybdenum disulfide (MoS2) by cesium carbonate (Cs2CO3) surface functionalization. The electron charge carrier concentration in exfoliated monolayer MoS2 can be increased by about 9 times after Cs2CO3 functionalization. The n-type doping effect was evaluated by in situ transport measurements of MoS2 field-effect transistors (FETs) and further corroborated by in situ ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and Raman scattering measurements. The electron doping enhances the formation of negative trions (i.e., a quasiparticle comprising two electrons and one hole) in monolayer MoS2 under light irradiation and significantly reduces the charge recombination of photoexcited electron-hole pairs. This results in large photoluminescence suppression and an obvious photocurrent enhancement in monolayer MoS2 FETs.

16.
Sci Rep ; 4: 4537, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686949

ABSTRACT

A simply and reproducible way is proposed to significantly suppress the nucleation density of graphene on the copper foil during the chemical vapor deposition process. By inserting a copper foil into a tube with one close end, the nucleation density on the copper foils can be reduced by more than five orders of magnitude and an ultra-low nucleation density of ~10 nucleus/cm(2) has been achieved. The structural analyses demonstrate that single crystal monolayer graphene with a lateral size of 1.9 mm can be grown on the copper foils under the optimized growth condition. The electrical transport studies show that the mobility of such single crystal graphene is around 2400 cm(2)/Vs.

17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(5): 1257-60, 2010 May.
Article in Chinese | MEDLINE | ID: mdl-20672613

ABSTRACT

Raman spectrum was applied to analyze the synthesis mechanism of nanostructure porous ZnO microspheres prepared via hydrothermal method assisted with trisodium citrate. The Raman spectrum characteristics of the sample revealed that the ZnO microspheres contained Zn-citrate complex, which was the complex of citrate acid group and Zn2+ in the reaction solution. The complex was chemisorbed on (204) and (503) faces of the Zn(OH)2 crystallite in the reacting solution, resulting in Zn(OH)2 nanosheet from the crystallite. Large quantities of Zn(OH)2 nanosheets aggregated as porous microspheres in hydrothermal process. Zn-citrate complex chemisorbed on the nanosheet improved the thermal stability of Zn(OH)2, which means a decomposition temperature over 200 degrees C. Nanostructure porous ZnO microspheres were obtained by heating Zn(OH)2 microspheres at 300 degrees C and the nanosheet structure was maintained.

SELECTION OF CITATIONS
SEARCH DETAIL
...