Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Mar Drugs ; 22(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921598

ABSTRACT

To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.


Subject(s)
Chitin , Chitinases , Micromonospora , Chitinases/metabolism , Chitinases/chemistry , Chitinases/isolation & purification , Chitinases/genetics , Chitin/analogs & derivatives , Chitin/metabolism , Chitin/chemistry , Hydrogen-Ion Concentration , Substrate Specificity , Micromonospora/enzymology , Micromonospora/genetics , Hydrolysis , Escherichia coli/genetics , Chitosan/chemistry , Enzyme Stability
2.
Environ Res ; 258: 119453, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909951

ABSTRACT

Thermophilic anaerobic digestion (AD) of animal manure offers various environmental benefits but the process requires a microbial community acclimatized to high ammonia. In current study, a lab-scale continuous stirred tank reactor (CSTR) fed with chicken manure was operated under thermophilic condition for 450 days in total. Results showed that the volumetric methane production decreased from 445 to 328 and sharply declined to 153 mL L-1·d-1 with feeding total solid (TS) step increased from 5% to 7.5% and 10%, respectively. While, after a long-term stop feeding for 80 days, highly disturbed reactor was able to recover methane generation to 739 mL L-1·d-1 at feeding TS of 10%. Isotope analysis indicted acetate converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway increased from 33% to 63% as the concentration of ammonium increased from 2493 to 6258 mg L-1. Significant different in the genome expression of the SAO bacterial from 0.09% to 1.23%, combining with main hydrogenotrophic partners (Methanoculleus spp. and Methanothermobacter spp.) contented of 2.1% and 99.9% during inhibitory and recovery stages, respectively. The highly expressed KEGG pathway in level 3 (enzyme genes) for the Recovery sludge combining with the extraordinary high abundance of genera Halocella sp. suggested that Halocella sp. might be a highly efficient hydrolytic and acidogenic microorganism and enhance the process of SAO during carbon metabolic flow to methane. This report will be a basis for further study of AD studies on high nitrogen content of poultry manure.

3.
Chem Commun (Camb) ; 60(52): 6635-6638, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38853651

ABSTRACT

Ultrathin catalysts predominantly expose surface active atoms to deliver promising applications in oxygen reduction reactions (ORRs). However, they are commonly synthesized at high reaction temperatures, with tedious chemical routes involved. Herein, we report a low temperature (273 K) electric field driven route to synthesize zigzag-surface ultrathin copper nanowires. Interestingly, the ultrathin copper nanowires assemble into three-dimensional microspheres, which exhibit hydrophobic-aerophilic features, eventually resulting in good ORR activities. The aerophilicity and hydrophobicity of copper nanowires are related to their Cu2O active sites and hierarchical protuberances, respectively. Our findings open a new door to grow ultrathin catalysts for new energy storage systems.

4.
Article in English | MEDLINE | ID: mdl-38723743

ABSTRACT

Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.


Subject(s)
Acclimatization , Adipose Tissue, Brown , Arvicolinae , Cold Temperature , Thermogenesis , Uncoupling Protein 1 , Animals , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Arvicolinae/physiology , Acclimatization/physiology , Uncoupling Protein 1/metabolism , Thermogenesis/physiology , Male , Body Temperature Regulation/physiology , Basal Metabolism
5.
Food Funct ; 15(11): 5955-5971, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738998

ABSTRACT

The structural characteristics of fucoidans exhibit species and regional diversity. Previous studies have demonstrated that Laminaria japonica- and Ascophyllum nodosum-derived fucoidans have type I and type II fucosyl chains, respectively. These chemical differences may contribute to distinct hypolipidemic effects and mechanisms of action. Chemical analysis demonstrated that the percentage contents of sulfate, glucuronic acid, and galactose were higher in L. japonica-derived fucoidans than those of A. nodosum-derived fucoidans. In hyperlipidemic apolipoprotein E-deficient mice, both A. nodosum- and L. japonica-derived fucoidans significantly decreased the plasma and hepatic levels of total cholesterol and triglyceride, leading to the reduction of atherosclerotic plaques. Western blotting experiments demonstrated that these fucoidans significantly enhanced the expression and levels of scavenger receptor B type 1, cholesterol 7 alpha-hydroxylase A1, and peroxisome proliferator-activated receptor (PPAR)-α, contributing to circulating lipoprotein clearance and fatty acid degradation, respectively. Differentially, L. japonica-derived fucoidan significantly increased the LXR/ATP-binding cassette G8 signaling pathway in the small intestine, as revealed by real-time quantitative PCR, which may lead to further cholesterol and other lipid excretion. Collectively, these data are useful for understanding the hypolipidemic mechanisms of action of seaweed-derived fucoidans, and their potential application for the prevention and/or treatment of atherosclerotic cardiovascular diseases.


Subject(s)
Apolipoproteins E , Ascophyllum , Hypolipidemic Agents , Laminaria , Polysaccharides , Animals , Laminaria/chemistry , Ascophyllum/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hypolipidemic Agents/pharmacology , Apolipoproteins E/genetics , Male , Mice, Inbred C57BL , Triglycerides/blood , Triglycerides/metabolism , Cholesterol/blood , Cholesterol/metabolism , Mice, Knockout , PPAR alpha/metabolism , PPAR alpha/genetics , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Liver/metabolism , Liver/drug effects , Humans , Edible Seaweeds
6.
Front Cardiovasc Med ; 11: 1372055, 2024.
Article in English | MEDLINE | ID: mdl-38699583

ABSTRACT

Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators.

7.
NPJ Biofilms Microbiomes ; 10(1): 24, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503759

ABSTRACT

Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Panax , Rats , Animals , Circadian Clocks/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/pharmacology , Inflammation , Signal Transduction , Gene Expression
8.
Chemosphere ; 351: 141135, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215827

ABSTRACT

The photo-Fenton process provides a sustainable and cost-effective strategy for removing refractory organic contaminants in wastewater. Herein, a high-efficient Fe-doped g-C3N4 photocatalyst (Fe@CN10) with a unique 3D porous mesh structure was prepared by one-pot thermal polymerization for ultrafast degradation of azo dyes, antibiotics, and phenolic acids in heterogeneous photo-Fenton systems under visible light irradiation. Fe@CN10 exhibited a synergy between adsorption-degradation processes due to the co-existence of Fe3C and Fe3N active sites. Specifically, Fe3C acted as an adsorption site for pollutant and H2O2 molecules, while Fe3N acted as a photocatalytic active site for the high-efficient degradation of MO. Resultingly, Fe@CN10 showed a photocatalytic degradation rate of MO up to 140.32 mg/L min-1. The dominant ROS contributed to the removal of MO in the photo-Fenton pathway was hydroxyl radical (•OH). Surprisingly, as the key reactive species, singlet oxygen (1O2) generated from superoxide radical (•O2-) also efficiently attacked MO in a photo-self-Fenton pathway. Additionally, sponge/Fe@CN10 was prepared and filled in the continuous flow reactors for nearly 100% degradation of MO over 150 h when treating artificial organic wastewater. This work provided a facile route to prepare highly-active Fe-doped photocatalysts and develop a green photocatalytic system for wastewater treatment in the future.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Catalytic Domain , Wastewater , Light , Catalysis
9.
Chin J Integr Med ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212496

ABSTRACT

OBJECTIVE: To investigate the hemostatic effect of modified Sijunzi Granules (MSG) in primary immune thrombocytopenia (ITP) zebrafish model and explore the potential mechanism. METHODS: AB strain wild type zebrafish were treated with simvastatin (6 µmol/L) for 24 h to establish the hemorrhage model (model control group). The zebrafish were treated with MSG at different doses (55.6, 167, and 500 µg/mL), respectively. The hemostatic effect was assessed by examining the intestinal bleeding and hemostatic rate. 5-Hydroxytryptamine (5-HT) content was determined using enzyme-linked immunosorbent assay (ELISA) assay. The expressions of 5-HT2aR, 5-HT2bR, and SERT genes were detected by quantitative real-time polymerase chain reaction(PCR). The protein expressions of protein kinase B (Akt), p-Akt, extracellular regulated protein kinases (Erk), and p-Erk were examined using Western blot analysis. RESULTS: The intestinal bleeding rate was 37%, 40%, and 80% in the 55.6, 167, and 500 µg/mL dose of MSG, respectively, in which 55.6 and 167 µg/mL MSG dose groups were associated with significantly decreased intestinal bleeding rate when compared with the model control group (70%, P<0.05). Significantly higher hemostatic rates were also observed in the 55.6 (54%) and 167 (52%) µg/mL MSG dose groups (P<0.05). MSG increased the 5-HT content and mRNA expression levels of 5-HT2aR, 5-HT2bR, and SERT (P<0.05). In addition, caspase3/7 activity was inhibited (P<0.05). Significant increase in p-Akt and p-Erk was also detected after treatment with MSG (P<0.05). CONCLUSIONS: MSG could reduce the incidence and severity of intestinal bleeding in zebrafish by activating MAPK/Erk and PI3K/Akt signal pathways through regulating the levels of 5-HT and its receptors, which may provide evidence for the treatment of ITP.

10.
Natl Sci Rev ; 10(10): nwad209, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37928774

ABSTRACT

Host phylogeny and environment have all been implicated in shaping the gut microbiota and host metabolic traits of mammals. However, few studies have evaluated phylogeny-associated microbial assembly and host metabolic plasticity concurrently, and their relationships on both short-term and evolutionary timescales. We report that the branching order of a gut microbial dendrogram was nearly congruent with phylogenetic relationships of seven rodent species, and this pattern of phylosymbiosis was intact after diverse laboratory manipulations. Laboratory rearing, diet or air temperature (Ta) acclimation induced alterations in gut microbial communities, but could not override host phylogeny in shaping microbial community assembly. A simulative heatwave reduced core microbiota diversity by 26% in these species, and led to an unmatched relationship between the microbiota and host metabolic phenotypes in desert species. Moreover, the similarity of metabolic traits across species at different Tas was not correlated with phylogenetic distance. These data demonstrated that the gut microbial assembly showed strong concordance with host phylogeny and may be shaped by environmental variables, whereas host metabolic traits did not seem to be linked with phylogeny.

11.
Chem Commun (Camb) ; 59(91): 13591-13594, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37888484

ABSTRACT

Due to its high theoretical capacity and low anode potential advantages, lithium is becoming the ideal high-capacity anode of next generation batteries. Nevertheless, the satisfactory long-term cyclability of lithium metal batteries is still not achieved. Inspired by the intrinsic soft nature of the lithium metal, we have developed a simple room temperature solid-state deformation route to overcome the lithium dendrite issue, and the cycle life of the deformation treated lithium anode is 5 times that of the untreated lithium anode. It is demonstrated that microscale lithium grains are divided into nanoscale lithium grains by directional friction forces of solid-state deformation. The lithium grain boundaries are lithiophilic active sites towards Li ions, which regulate homogeneous deposition of Li ions to form a thin and stable SEI film, eventually overcoming the lithium dendrite issue and enhancing the cyclability of lithium batteries. Overcoming the challenges in conventional tedious chemical routes to grow high-density grain boundary active sites for catalysis, the room temperature solid-state deformation route will pave a new road to grow high-density grain boundaries for fuel cells and metal-based batteries.

12.
PLoS One ; 18(9): e0290382, 2023.
Article in English | MEDLINE | ID: mdl-37682863

ABSTRACT

Thigmotaxis is an innate predator avoidance behaviour of rodents. To gain insight into how injury and disease models, and analgesic drug treatments affect thigmotaxis, we performed a systematic review and meta-analysis of studies that assessed thigmotaxis in the open field test. Systematic searches were conducted of 3 databases in October 2020, March and August 2022. Study design characteristics and experimental data were extracted and analysed using a random-effects meta-analysis. We also assessed the correlation between thigmotaxis and stimulus-evoked limb withdrawal. This review included the meta-analysis of 165 studies We report thigmotaxis was increased in injury and disease models associated with persistent pain and this increase was attenuated by analgesic drug treatments in both rat and mouse experiments. Its usefulness, however, may be limited in certain injury and disease models because our analysis suggested that thigmotaxis may be associated with the locomotor function. We also conducted subgroup analyses and meta-regression, but our findings on sources of heterogeneity are inconclusive because analyses were limited by insufficient available data. It was difficult to assess internal validity because reporting of methodological quality measures was poor, therefore, the studies have an unclear risk of bias. The correlation between time in the centre (type of a thigmotactic metric) and types of stimulus-evoked limb withdrawal was inconsistent. Therefore, stimulus-evoked and ethologically relevant behavioural paradigms should be viewed as two separate entities as they are conceptually and methodologically different from each other.


Subject(s)
Open Field Test , Rodentia , Rats , Animals , Mice , Pain , Antisocial Personality Disorder , Databases, Factual
13.
Article in English | MEDLINE | ID: mdl-37611884

ABSTRACT

In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.


Subject(s)
Melatonin , Mice , Animals , Rats , Gerbillinae , Melatonin/pharmacology , Inflammation/drug therapy , Energy Metabolism , Colon , Aging
14.
NPJ Biofilms Microbiomes ; 9(1): 32, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270649

ABSTRACT

Currently, considerable attention is focused on exploring the potential relationship between herbal medicine (HM) and the gut microbiome in terms of thermoregulation, which is an important aspect of human health, in modern system biology. However, our knowledge of the mechanisms of HM in thermoregulation is inadequate. Here, we demonstrate that the canonical herbal formula, Yijung-tang (YJT), protects against hypothermia, hyperinflammation, and intestinal microbiota dysbiosis in PTU-induced hypothyroid rats. Notably, these properties were associated with alterations in the gut microbiota and signaling crosstalk between the thermoregulatory and inflammatory mediators in the small intestine and brown adipose tissue (BAT). In contrast to the conventional drug L-thyroxine for curing hypothyroidism, YJT has an efficacy for attenuating systematic inflammatory responses, related with depression in intestinal TLR4 and Nod2/Pglyrp1 signaling pathways. Our findings suggest that YJT could promote BAT thermogenesis and prevent systemic inflammation in PTU-induced hypothyroid rats, which was associated with its prebiotic effect on modulating of the gut microbiota and gene expression with relevance in the enteroendocrine function and innate immune systems. These findings may strengthen the rationale of the microbiota-gut-BAT axis for a paradigm shift to enable holobiont-centric medicine.


Subject(s)
Gastrointestinal Microbiome , Hypothyroidism , Rats , Humans , Animals , Inflammation/drug therapy , Thermogenesis , Hypothyroidism/drug therapy
15.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298074

ABSTRACT

Heat sensation and tolerance are crucial for determining species' survival and distribution range of small mammals. As a member of the transmembrane proteins, transient receptor potential vanniloid 1 (TRPV1) is involved in the sensation and thermoregulation of heat stimuli; however, the associations between animal's heat sensitivity and TRPV1 in wild rodents are less studied. Here, we found that Mongolian gerbils (Meriones unguiculatus), a rodent species living in Mongolia grassland, showed an attenuated sensitivity to heat compared with sympatrically distributed mid-day gerbils (M. meridianus) based on a temperature preference test. To explain this phenotypical difference, we measured the TRPV1 mRNA expression of two gerbil species in the hypothalamus, brown adipose tissue, and liver, and no statistical difference was detected between two species. However, according to the bioinformatics analysis of TRPV1 gene, we identified two single amino acid mutations on two TRPV1 orthologs in these two species. Further Swiss-model analyses of two TRPV1 protein sequences indicated the disparate conformations at amino acid mutation sites. Additionally, we confirmed the haplotype diversity of TRPV1 in both species by expressing TRPV1 genes ectopicly in Escherichia coli system. Taken together, our findings supplemented genetic cues to the association between the discrepancy of heat sensitivity and the functional differentiation of TRPV1 using two wild congener gerbils, promoting the comprehension of the evolutionary mechanisms of the TRPV1 gene for heat sensitivity in small mammals.


Subject(s)
Body Temperature Regulation , Hot Temperature , Animals , Gerbillinae/metabolism , Body Temperature Regulation/genetics , Amino Acids/metabolism , Genetic Variation
16.
Angew Chem Int Ed Engl ; 62(37): e202306501, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37365143

ABSTRACT

A palladium-catalyzed reductive difluorocarbene transfer reaction that tames difluorocarbene to couple with two electrophiles has been developed, representing a new mode of difluorocarbene transfer reaction. The approach uses low-cost and bulk industrial chemical chlorodifluoromethane (ClCF2 H) as the difluorocarbene precursor. It produces a variety of difluoromethylated (hetero)arenes from widely available aryl halides/triflates and proton sources, featuring high functional group tolerance and synthetic convenience without preparing organometallic reagents. Experimental mechanistic studies reveal that an unexpected Pd0/II catalytic cycle is involved in this reductive reaction, wherein the oxidative addition of palladium(0) difluorocarbene ([Pd0 (Ln )]=CF2 ) with aryl electrophile to generate the key intermediate aryldifluoromethylpalladium [ArCF2 Pd(Ln )X], followed by reaction with hydroquinone, is responsible for the reductive difluorocarbene transfer.

17.
Inorg Chem ; 62(17): 6864-6870, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37078343

ABSTRACT

The first carbonatotellurites, AKTeO2(CO3) (A = Li, Na), have been successfully synthesized by using boric acid as the mineralizer. AKTeO2(CO3) (A = Li, Na) crystallize in the monoclinic space group P21/n (no. 14), and their structures exhibit the novel zero-dimensional (0D) [Te2C2O10]4- clusters, in which two [TeO4]4- groups form a [Te2O6]4- dimer via edge-sharing, with each side of the dimer attached by a [CO3]2- group via a Te-O-C bridge. The alkali metal cations occupy the voids between the 0D clusters and maintain the charge balance. The ultraviolet-visible-near-infrared diffuse reflectance spectra show that the short absorption cut-off edges of LiKTeO2(CO3) (LKTC) and NaKTeO2(CO3) (NKTC) are 248 and 240 nm, respectively, and LKTC exhibits the largest experimental band gap (4.58 eV) among all of the tellurites containing the π-conjugated anionic groups reported. Theoretical calculations revealed that they exhibit moderate birefringences of 0.029 and 0.040@1064 nm, respectively.

18.
Reprod Biol Endocrinol ; 21(1): 34, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013570

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effectiveness of granulocyte colony-stimulating factor (G-CSF) for infertility and recurrent spontaneous abortion. METHODS: Existing research was searched in PubMed, Embase and Cochrane Library till Dec 2021. Randomized control trials (RCTs) that compared G-CSF administration with the control group in infertility women undergoing IVF were included. The primary outcomes included clinical pregnancy rate; the secondary outcomes included live birth rate, abortion ratebiochemical pregnancy rate, embryo implantation rate, as well as endometrial thickness. RESULT(S): 20 RCTs were included in this study. G-CSF increased the clinical pregnancy rate (RR = 1.85; 95% CI: 1.07, 3.18) and the endometrial thickness (MD = 2.25; 95% CI: 1.58,2.92;) in patients with thin endometrium undergoing IVF. G-CSF increased the biochemical pregnancy rate (RR = 2.12; 95% CI: 1.54, 2.93), the embryo implantation rate (RR = 2.51; 95% CI: 1.82, 3.47) and the clinical pregnancy rate (RR = 1.93; 95% CI: 1.63, 2.29) in patients with a history of repeated implantation failure undergoing IVF. No differences were found in pregnancy outcomes of general IVF patients. CONCLUSIONS: Granulocyte colony-stimulating factor is likely to be a potential option for infertility women undergoing IVF with thin endometrium or recurrent implantation failure . TRIAL REGISTRATION: Retrospectively registered (The PROSPERO registration number: CRD42022360161).


Subject(s)
Abortion, Habitual , Infertility, Female , Pregnancy , Female , Humans , Pregnancy Outcome , Pregnancy Rate , Infertility, Female/therapy , Granulocyte Colony-Stimulating Factor/therapeutic use , Fertilization in Vitro , Live Birth
19.
Dalton Trans ; 52(14): 4423-4428, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36916705

ABSTRACT

A new alkaline earth-rare earth iodate, Ba2Ce(IO3)8(H2O), has been synthesised by a hydrothermal method and its structure has been determined by single-crystal X-ray diffraction. Ba2Ce(IO3)8(H2O) crystallises in the polar space group Pna21 (No. 33) with unit cell parameters of a = 15.5042(5) Å, b = 7.8841(3) Å, c = 19.5359(8) Å, V = 2388.00(15) Å3, and Z = 4. The structure of Ba2Ce(IO3)8(H2O) is characterised by zero-dimensional (0D) [Ce(IO3)8(H2O)]4- units separated by Ba2+ cations. Large crystals of Ba2Ce(IO3)8(H2O) with dimensions of a few millimetres have been grown. The UV-vis-NIR transmission spectroscopy measurements of the compound showed that it has a short wavelength absorption edge at 381 nm. Ba2Ce(IO3)8(H2O) exhibits a relatively weak second-harmonic-generation (SHG) response, about 0.2 times that of KDP, which is mainly due to the fact that the polarisation effects of the IO3 groups in the structure largely cancel each other out. The relationships between the structure and the physical properties of Ba2Ce(IO3)8(H2O) have also been calculated theoretically. Ba2Ce(IO3)8(H2O) has a band gap of 2.44 eV, which is determined by the Ce-O and I-O interactions and is larger than those of many simple metal iodates. The introduction of alkaline earth metals favours an increase in band gap. Our work shows that the SHG and birefringence properties are closely related to the arrangement of the functional groups in the compounds.

20.
World J Clin Cases ; 11(3): 669-676, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36793642

ABSTRACT

BACKGROUND: Heterotopic pregnancy (HP) is a rare condition in which both ectopic and intrauterine pregnancies occur. HP is uncommon after natural conception but has recently received more attention due to the widespread use of assisted reproductive techniques (ART) such as ovulation promotion therapy. CASE SUMMARY: Here, we describe a case of HP that occurred after ART with concurrent tubal and intrauterine singleton pregnancies. This was treated successfully with surgery to preserve the intrauterine pregnancy, resulting in the birth of a low-weight premature infant. This case report aims to increase awareness of the possibility of HP during routine first-trimester ultrasound examinations, especially in pregnancies resulting from ART and even if multiple intrauterine pregnancies are present. CONCLUSION: This case alerts us to the importance of comprehensive data collection during regular consultations. It is important for us to remind ourselves of the possibility of HP in all patients presenting after ART, especially in women with an established and stable intrauterine pregnancy that complain of constant abdominal discomfort and also in women with an unusually raised human chorionic gonadotropin level compared with simplex intrauterine pregnancy. This will allow symptomatic and timeous treatment of patients with better results.

SELECTION OF CITATIONS
SEARCH DETAIL
...