Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725030

ABSTRACT

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Subject(s)
Glioblastoma , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Male , Female , Gene Expression Regulation, Neoplastic , Cell Movement , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Mice, Nude , Apoptosis
2.
J Hazard Mater ; 470: 134205, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579583

ABSTRACT

Carbazole (CBZ) and acridine (ACR) are polycyclic aromatic nitrogen heterocycles (PANHs) widely found in combined contaminated soils, while investigations on organic-organic interactions have been very limited. In this study, batch experiments were carried out on five soils with different properties, taking CBZ as a representative of PANHs and ACR as a co-existing contaminant. The adsorption isotherms of CBZ (50-1000 µg/L) were nonlinear. Soil organic matter (SOM) and cation exchange capacity (CEC) showed positive correlations with CBZ adsorption-desorption coefficients. The adsorption mechanisms of CBZ involved hydrogen bonding, π-π interaction, and cation-π bonding. Different concentrations of ACR had varying effects on CBZ. The adsorption of CBZ was inhibited with 250 µg/L ACR. The cooperative adsorption was observed on three soils with increasing ACR concentration (1000 µg/L) and led to more pronounced nonlinear isotherms. The S-shaped isotherms of ACR indicated that ACR was adsorbed to the soil surface in a perpendicular configuration. New adsorption sites were created allowing for increased CBZ adsorption through π-π interaction with ACR. Therefore, variations in soil properties and potential impacts of co-existing contaminants should be well considered when assessing the combined pollution of site soil. This will contribute to a more accurate estimation of environmental and health risks.

3.
Angew Chem Int Ed Engl ; 63(23): e202404663, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38575553

ABSTRACT

The intrinsic activity assessment of transition metal oxides (TMOs) as key electrocatalysts for the oxygen evolution reaction (OER) has not been standardized due to uncertainties regarding their structure and composition, difficulties in accurately measuring their electrochemically active surface area (ECSA), and deficiencies in mass-transfer (MT) rates in conventional measurements. To address these issues, we utilized an electrodeposition-thermal annealing method to precisely synthesize single-particle TMOs with well-defined structure and composition. Concurrently, we engineered low roughness, spherical surfaces for individual particles, enabling precise measurement of their ECSA. Furthermore, by constructing a conductor-core semiconductor-shell structure, we evaluated the inherent OER activity of perovskite-type semiconductor materials, broadening the scope beyond just conductive TMOs. Finally, using single-particle nanoelectrode technique, we systematically measured individual TMO particles of various sizes for OER, overcoming MT limitations seen in conventional approaches. These improvements have led us to propose a precise and reliable approach to evaluating the intrinsic activity of TMOs, not only validating the accuracy of theoretical calculations but also revealing a strong correlation of OER activity on the melting point of TMOs. This discovery holds significant importance for future high-throughput material research and applications, offering valuable insights in electrocatalysis.

5.
Inorg Chem ; 63(9): 4279-4287, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38377593

ABSTRACT

It is highly desirable but challenging to optimize the electronic structure of an active site to realize moderate active site-Hads bond energies for boosting photocatalytic H2 evolution. Herein, an interfacial engineering strategy is developed to simultaneously concentrate hydrogen species and accelerate the combination of an Hads intermediate to generate free H2 by constructing W-WC-W2C (WCC) cocatalysts. Systematic investigations reveal that hybridizing with W2C creates electron-rich W active sites and effectively induces the downshift of the d-band center of W in WC. Consequently, the strong W-Hads bonds on the surface of WC are weakened, thus promoting the desorption of Hads to rapidly produce free H2. The optimized 40-WCC/CdS photocatalyst exhibits a high hydrogen evolution rate of 63.6 mmol g-1 h-1 under visible light (≥420 nm) with an apparent quantum efficiency of 39.5% at 425 nm monochromatic light, which is about 40-fold of the pristine CdS. This work offers insights into the design of cocatalyst for high-efficiency photocatalytic H2 production.

6.
Chem Commun (Camb) ; 60(16): 2176-2179, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289337

ABSTRACT

d-π overlap, which represents overlap between metal-d and graphene-π orbitals to facilitate electron transfer, has rarely been reported. Ni/PtNi-G2 exhibits exceptional performance in seawater hydrogen evolution due to the electron-rich surface on Pt resulting from enhanced d-π overlap and subsequent electron transfer from graphene and Ni to Pt.

7.
Chemosphere ; 349: 140954, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103656

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants in the environment, which are teratogenic, carcinogenic, and mutagenic. Co-contamination of PAHs and heavy metal commonly exists in soil. In this study, 20 types of soils with different properties in China were collected and comprehensively characterized. Phenanthrene (Phe) and Cu (II) were selected as representatives of PAHs and heavy metals, respectively. The adsorption-desorption behaviors of Phe under Phe contamination and Cu (II)-Phe co-contamination in 20 types of soils were studied. The adsorption-desorption behaviors of Phe in 20 types of soils varied greatly, and adsorption of Phe in the soils followed both linear partitioning and nonlinear surface adsorption. Soil organic matter (SOM) plays an important role in the adsorption-desorption behavior of Phe. When the concentrations of Phe were >50 µg/L, soft carbon (SC) fraction of SOM not black carbon (BC) contributed more to the adsorption of Phe. Soil dissolved organic matter (DOM), especially fulvic acid and humic acid fractions, contributes to the adsorption of Phe. Under the effect of Cu (II) (60 mg/L in solution), the adsorption capacity of soil for Phe increased, which possibly resulted from lowered pH, the existence of the cation-π bonding and the "bonding bridge" effect. The systematic investigation of adsorption-desorption behaviors of Phe in soils under heavy metal-PAHs co-contamination will provide a scientific basis for the calculation of soil environmental capacity in the future.


Subject(s)
Metals, Heavy , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil/chemistry , Adsorption , Soil Pollutants/analysis , Phenanthrenes/chemistry , Metals, Heavy/analysis , Carbon
8.
Front Endocrinol (Lausanne) ; 14: 1242110, 2023.
Article in English | MEDLINE | ID: mdl-38075041

ABSTRACT

Introduction: Subclinical hypothyroidism (SCH) is a common endocrine disorder characterized by elevated thyroid-stimulating hormone (TSH) levels and normal free thyroxine (FT4) levels. The overdiagnosis and overtreatment of SCH in elderly patients have become concerns as TSH levels naturally increase with age. Studies have shown that many elderly patients with SCH can recover without treatment, and the administration of levothyroxine (L-T4) does not improve their prognosis. Therefore, It is necessary to establish age-specific reference ranges for TSH in elderly individuals to aid in clinical decision-making and prevent overdiagnosis. Methods: This is a multicenter prospective study that focuses on Chinese elderly patients with SCH who have TSH levels below 10 mU/L. After obtaining the informed consent of the patients, their initial diagnosis information will be registered, and they will be asked to fill out questionnaires such as the Montreal Cognitive Assessment-Basic (MoCA-B), Hamilton Depression Scale (HAMD), Hypothyroidism Symptom Questionnaire (SRQ), frail scale(FRAIL), fatigue scale, and EQ-5D. In addition, thyroid function tests, blood lipid analysis, carotid artery ultrasound, and thyroid ultrasound examinations will be conducted. Patients will also be grouped according to FT4 levels, the changes in FT4 and its relationship with TSH can also be described. For patients over 80 years old, a decrease in FT4 will be used as an endpoint event, while for patients between 60-80 years old, TSH levels greater than or equal to 10mIU/L or a decline in FT4 will be used as the endpoint event. The TSH reference intervals of the general and elderly populations will be used to calculate medical costs associated with multiple follow-ups of patients, and a social-economic analysis will also be conducted. Discussion: This study will prospectively observe elderly patients with SCH who are screened using both age-specific and non-age-specific TSH reference ranges for the elderly population. We will compare the results of elderly patients diagnosed with SCH using different reference ranges and analyze their association with FT4 to identify meaningful SCH patients and reduce over diagnosis and over treatment of elderly SCH. Ethics: The Medical Science Research Ethics Committee of the First Affiliated Hospital of China Medical University approved this study (ID: AF-SOP-07-1.1-01). The results will be published in an open-access journal. Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2300070831.


Subject(s)
Hyperthyroidism , Hypothyroidism , Aged , Aged, 80 and over , Humans , Middle Aged , Age Factors , Hyperthyroidism/complications , Multicenter Studies as Topic , Observational Studies as Topic , Prospective Studies , Thyrotropin , Thyroxine/therapeutic use
9.
Cancers (Basel) ; 15(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894384

ABSTRACT

Thyroid Stimulating Hormone (TSH) is a hormone secreted by the pituitary gland and plays a role in regulating the production and secretion of thyroid hormones by the thyroid gland. This precise feedback loop is essential for maintaining a harmonious balance of thyroid hormones in the body, which are vital for numerous physiological processes. Consequently, TSH serves as a significant marker in assessing thyroid function, and deviations from normal TSH levels may indicate the presence of a thyroid disorder. Thyroid cancer (TC) is the malignant tumor within the endocrine system. In recent years, numerous experts have dedicated their efforts to discovering efficacious biomarkers for TC. These biomarkers aim to improve the accurate identification of tumors with a poor prognosis, as well as facilitate active monitoring of tumors with a more favorable prognosis. The role of TSH in the thyroid gland underscores its potential influence on the occurrence and progression of TC, which has garnered attention in the scientific community. However, due to the limited scope of clinical research and the dearth of high-quality foundational studies, the precise impact of TSH on TC remains unclear. Consequently, we present a comprehensive review of this subject, aiming to offer a valuable reference for future research endeavors.

10.
PeerJ ; 11: e15610, 2023.
Article in English | MEDLINE | ID: mdl-37456899

ABSTRACT

Background: White clover (Trifolium repens L) is a high-quality forage grass with a high protein content, but it is vulnerable to cold stress, which can negatively affect its growth and development. WRKY transcription factor is a family of plant transcription factors found mainly in higher plants and plays an important role in plant growth, development, and stress response. Although WRKY transcription factors have been studied extensively in other plants, it has been less studied in white clover. Methods and Results: In the present research, we have performed a genome-wide analysis of the WRKY gene family of white clover, in total, there were 145 members of WRKY transcription factors identified in white clover. The characterization of the TrWRKY genes was detailed, including conserved motif analysis, phylogenetic analysis, and gene duplication analysis, which have provided a better understanding of the structure and evolution of the TrWRKY genes in white clover. Meanwhile, the genetic regulation network (GRN) containing TrWRKY genes was reconstructed, and Gene Ontology (GO) annotation analysis of these function genes showed they contributed to regulation of transcription process, response to wounding, and phosphorylay signal transduction system, all of which were important processes in response to abiotic stress. To determine the TrWRKY genes function under cold stress, the RNA-seq dataset was analyzed; most of TrWRKY genes were highly upregulated in response to cold stress, particularly in the early stages of cold stress. These results were validated by qRT-PCR experiment, implying they are involved in various gene regulation pathways in response to cold stress. Conclusion: The results of this study provide insights that will be useful for further functional analyses of TrWRKY genes in response to biotic or abiotic stresses in white clover. These findings are likely to be useful for further research on the functions of TrWRKY genes and their role in response to cold stress, which is important to understand the molecular mechanism of cold tolerance in white clover and improve its cold tolerance.


Subject(s)
Cold-Shock Response , Trifolium , Cold-Shock Response/genetics , Phylogeny , Trifolium/genetics , Transcription Factors/genetics , Medicago/metabolism
11.
Antiviral Res ; 217: 105688, 2023 09.
Article in English | MEDLINE | ID: mdl-37516153

ABSTRACT

Vaccines that trigger mucosal immune responses at the entry portals of pathogens are highly desired. Here, we showed that antigen-decorated nanoparticle generated through CRISPR engineering of T4 bacteriophage can serve as a universal platform for the rapid development of mucosal vaccines. Insertion of Flu viral M2e into phage T4 genome through fusion to Soc (Small Outer Capsid protein) generated a recombinant phage, and the Soc-M2e proteins self-assembled onto phage capsids to form 3M2e-T4 nanoparticles during propagation of T4 in E. coli. Intranasal administration of 3M2e-T4 nanoparticles maintains antigen persistence in the lungs, resulting in increased uptake and presentation by antigen-presenting cells. M2e-specific secretory IgA, effector (TEM), central (TCM), and tissue-resident memory CD4+ T cells (TRM) were efficiently induced in the local mucosal sites, which mediated protections against divergent influenza viruses. Our studies demonstrated the mechanisms of immune protection following 3M2e-T4 nanoparticles vaccination and provide a versatile T4 platform that can be customized to rapidly develop mucosal vaccines against future emerging epidemics.


Subject(s)
Influenza Vaccines , Nanoparticles , Orthomyxoviridae Infections , Animals , Mice , Influenza Vaccines/genetics , Bacteriophage T4/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Escherichia coli/genetics , Orthomyxoviridae Infections/prevention & control , Mice, Inbred BALB C , Viral Matrix Proteins
12.
Water Res ; 243: 120284, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37441900

ABSTRACT

Ultraviolet light-emitting diode (UV-LED) is a promising option for the traditional low-pressure UV lamp, but the evolutions of DOM composition, the formation of disinfection by-products (DBPs) and their toxicity need further study in raw water during UV-LED/chlorine process. In UV-LED (275 nm)/chlorine process, two-dimensional correlation spectroscopy (2DCOS) analysis on synchronous fluorescence and UV-vis spectra indicated the protein-like fractions responded faster than the humic-like components, the reactive sequence of peaks for DOM followed the order: 340 nm→240 nm→410 nm→205 nm→290 nm. Compared to chlorination for 30 mins, the UV-LED/chlorine process enhanced the degradation efficiency of three fluorescent components (humic-like, tryptophan-like, tyrosine-like) by 5.1%-46.1%, and the formation of carbonaceous DBPs (C-DBPs) significantly reduced by 43.8% while the formation of nitrogenous DBPs (N-DBPs) increased by 27.3%. The concentrations of C-DBPs increased by 17.8% whereas that of N-DBPs reduced by 30.4% in 24 h post-chlorination. The concentrations of brominated DBPs increased by 17.2% during UV-LED/chlorine process, and further increased by 18.5% in 24 h post-chlorination. According to the results of principal component analysis, the non-fluorescent components of DOM might be important precursors in the formation of haloketones, haloacetonitriles and halonitromethanes during UV-LED/chlorine process. Unlike chlorine treatment, the reaction of DOM in UV-LED/chlorine treatment generated fewer unknown DBPs. Compared with chlorination, the cytotoxicity of C-DBPs reduced but the cytotoxicity of both N-DBPs and Br-DBPs increased during UV-LED/chlorine process. Dichloroacetonitrile had the highest cytotoxicity, followed by monobromoacetic acid, bromochloroacetonitrile and trichloroacetic acid during 30 mins of UV-LED/chlorine process. Therefore, besides N-DBPs, the more toxic Br-DBPs formation in bromide-containing water is also not negligible in the practical applications of UV-LED (275 nm)/chlorine process.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Chlorine/chemistry , Dissolved Organic Matter , Water , Water Purification/methods , Water Pollutants, Chemical/chemistry , Halogens , Halogenation , Disinfectants/analysis
13.
Water Sci Technol ; 88(1): 92-105, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37452536

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) with continuous high concentration was used as the sole carbon and energy source to isolate a new bacterial consortium (K1) from agricultural soil covered with plastic film for a long time. Unclassified Comamonadaceae, Achromobacter, and Pseudomonas in K1 were identified as major genera of the consortium by high-throughput sequencing, and unclassified Commanadaceae was first reported to be related to DEHP degradation. Response surface method (RSM) showed that the optimum conditions for K1 to degrade DEHP were 31.4 °C, pH 7.3, and a concentration of 420 mg L-1. K1 maintains normal cell viability and stable DEHP degradation efficiency in the range of 10-3000 mg L-1 DEHP concentration, which is superior to existing research. The biodegradation of DEHP followed first-order kinetics when the initial concentration of DEHP was between 100 and 3,000 mg L-1. GC-MS analysis of different treatment groups showed that DEHP was degraded by the consortium group through the de-esterification pathway, and treatment effect was significantly better than that of the single bacteria treatment group. The subsequent substrate utilization experiment further confirmed that K1 could quickly mineralize DEHP. In addition, K1 has high degradation capacity for the most common phthalate acid esters in the environment.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Diethylhexyl Phthalate/analysis , Diethylhexyl Phthalate/metabolism , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism
14.
J Virol ; 97(6): e0059923, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37306585

ABSTRACT

Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.


Subject(s)
Bacteriophage T4 , DNA Restriction-Modification Enzymes , Escherichia coli , Bacteriophage T4/genetics , CRISPR-Cas Systems , Escherichia coli/enzymology , Escherichia coli/virology , Genome, Viral
15.
Environ Technol ; : 1-14, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191443

ABSTRACT

In this study, a new strain of bacteria, named Rhodococcus sp. KLW-1, was isolated from farmland soil contaminated by plastic mulch for more than 30 years. To improve the application performance of free bacteria and find more ways to use waste biochar, KLW-1 was immobilised on waste biochar by sodium alginate embedding method to prepare immobilised pellet. Response Surface Method (RSM) predicted that under optimal conditions (3% sodium alginate, 2% biochar and 4% CaCl2), di (2-ethylhexyl) phthalate (DEHP) degradation efficiency of 90.48% can be achieved. Under the adverse environmental conditions of pH 5 and 9, immobilisation increased the degradation efficiency of 100 mg/L DEHP by 16.42% and 11.48% respectively, and under the high-stress condition of 500 mg/L DEHP concentration, immobilisation increased the degradation efficiency from 71.52% to 91.56%, making the immobilised pellets have strong stability and impact load resistance to environmental stress. In addition, immobilisation also enhanced the degradation efficiency of several phthalate esters (PAEs) widely existing in the environment. After four cycles of utilisation, the immobilised particles maintained stable degradation efficiency for different PAEs. Therefore, immobilised pellets have great application potential for the remediation of the actual environment.

16.
Am J Transl Res ; 15(2): 817-833, 2023.
Article in English | MEDLINE | ID: mdl-36915723

ABSTRACT

BACKGROUND: The expression of aberrant interferon-stimulated gene 15 (ISG15) is connected with various human diseases, including cancer. ISG15 is involved in tumor formation and metastasis. However, its role in osteosarcoma is uncertain. METHODS: ISG15 expression in pan-cancer from RNA Sequencing data were obtained from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases. The relationship between ISG15 expression and prognosis was assessed through TCGA clinical survival data. Immunohistochemistry (IHC) images of ISG15 were retrieved using the Human Protein Atlas to analyze the differences in selected normal and tumor tissues. Gene enrichment analysis and signaling pathway analysis were used to assess the potential role of ISG15 in sarcoma, and the correlation between ISG15 expressions and immune cell infiltration levels was estimated by immune infiltration analysis. The expression levels of ISG15 were assessed by qRT-PCR and IHC. Colony formation, wound healing assay and transwell assay were used to detect the effects of ISG15 on the biological behaviors of osteosarcoma cells. The correlation between ISG15 levels and CD8+/CD68+ cells was further examined by double-labeled immunofluorescence. The chemotactic effect of ISG15 on CD8+/CD68+ cells was demonstrated by chemotactic experiments and flow cytometry. RESULTS: ISG15 was highly expressed in most cancers, while high ISG15 expression was significantly correlated with poor overall survival. Gene enrichment analysis in sarcoma suggested that antigen processing and presentation might be involved in the oncogenic mechanism of ISG15. Further immune infiltration analysis showed that high ISG15 expression might reflect the infiltration level of certain immune cells. Additionally, our verification showed that ISG15 was significantly related to the occurrence and metastasis of osteosarcoma, and knockdown of ISG15 significantly altered cell biological behavior, resulting in decreased proliferation, migration and invasion capabilities of osteosarcoma cells. The high expression of ISG15 in osteosarcoma tissue was associated with a high level of CD68+ immune cell infiltration while a low level of CD8+ T cell infiltration. CD68+ immune cells were recruited in vitro by overexpression of ISG15, which on the contrary could weaken the chemotaxis of CD8+ T cells. CONCLUSION: High ISG15 expression is an inherent feature of osteosarcoma and triggers tumorigenesis and metastasis by regulating tumor immunogenicity. ISG15 is expected to be the target of osteosarcoma treatment.

17.
ACS Nano ; 17(3): 3077-3087, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36688450

ABSTRACT

Aqueous Zn-based batteries (ZIBs) possess huge advantages in terms of high safety, low cost, and environmental friendliness. However, the lack of suitable cathodes with high-capacity, long-cycling, and high-rate capability limits their practical application. Herein, we present a highly crystalline one-dimensional π-d conjugated conductive metal-organic framework by coordinating ultrasmall 1,2,4,5-benzenetetramine (BTA) linkers with copper ions (Cu-BTA-H), as a cathode for ZIBs. The large ratio of active sites and dual redox mechanism of Cu-BTA-H, including the one-electron-redox reaction over copper ions (via Cu2+/Cu+) and the two-electron-redox reaction over organic ligands (via C═N/C-N), effectively enhance its reversible capacity. Meanwhile, the abundant porosity, small band gap, high crystallinity, and stable coordination structure of Cu-BTA-H endow it with fast ion/electron transport and effectively hinder the dissolution of organic ligands during cycling, respectively. Consequently, Cu-BTA-H possesses a high reversible capacity of 330 mAh g-1 at 200 mA g-1 and excellent rate performance and long-cycle stability, with a high capacity of 106.1 mAh g-1 at 2.0 A g-1 after 500 cycles and a high Coulombic efficiency of ∼100%. The proposed conductive MOFs with dual redox-active sites provide an efficient approach for constructing fast, stable, and high-capacity energy storage devices.

18.
Chemistry ; 29(5): e202202811, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36321591

ABSTRACT

A solvothermal method to prepare PtNi alloys that have differing morphologies is described. By adjusting the feed ratio of Pt and Ni precursors in this process, PtNi alloys with different compositions (Pt : Ni atomic ratio from 1 : 3 to 3 : 1) and morphologies (evolution from nanobranches to nanoparticles) are generated. The prepared Pt48 Ni52 alloy, which has a composite morphology comprised of nanobranches and nanoparticles, exhibits superior activity and durability towards the hydrogen evolution reaction (HER) in seawater compared to those of commercial Pt/C catalyst and other PtNi alloys that have different compositions and morphologies. The excellent seawater HER performance of Pt48 Ni52 is ascribed to its nanobranch/nanoparticle morphology that optimally facilitates electron accumulation on Pt, which enhances resistance to chloride corrosion in seawater.


Subject(s)
Alloys , Chlorides , Corrosion , Halogens , Hydrogen , Seawater
19.
Bioact Mater ; 23: 53-68, 2023 May.
Article in English | MEDLINE | ID: mdl-36406253

ABSTRACT

The high occurrence rate and difficulties in symptom control are listed as the major problems of oral mucosal disease by medical professionals. Following the development of oral mucosal lesions, the oral microenvironment changes, immunity declines, and continuous bacterial stimulation causes wound infection. Traditional antibacterial drugs are ineffective for oral mucosal lesions. To overcome this problem, a light-responsive antibacterial hydrogel containing sustained-release BMSCs was inspired by the trauma environment in the oral cavity, which is different from that on the body surface since it mostly remains under dark conditions. In the absence of light, the hydrogel seals the wound to form a barrier, exerts a natural bacteriostatic effect, and prevents invasion by foreign bacteria. Simultaneously, mesenchymal stem cells are presented, and the released growth factors and other substances have excellent anti-inflammatory and angiogenic effects, which result in rapid repair of the damaged site. Under light conditions, after photo-induced shedding of the hydrogel, RuB2A exerts an antibacterial effect accompanied by degradation of the hydrogel. Results in a rat oral mucosal repair model demonstrate that DCS-RuB2A2-BMSCs could rapidly repair the oral mucosa within 4 days. Sequencing data provide ideas for further analysis of the intrinsic molecular mechanisms and signaling pathways. Taken together, our results suggest that this light-responsive antibacterial hydrogel loaded with BMSCs can be used for rapid wound repair and may advance the development of therapeutic strategies for the treatment of clinical oral mucosal defects.

20.
Plants (Basel) ; 11(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432878

ABSTRACT

Alfalfa (Medicago sativa L.) is a perennial forage legume that is widely distributed throughout the world, and cold stress is an important environmental factor limiting the growth and production of alfalfa in cold regions. However, little is known of the molecular mechanisms regarding cold tolerance in alfalfa. Here, we conducted physiological metabolism assays and pan-transcriptome sequencing on eight cultivars of alfalfa under cold stress conditions. The results of the RNA-seq analysis showed that the genes are "oxidoreductase activity" and "transcription regulator activity", suggesting that genes with such functions are more likely to play important roles in the response to cold stress by alfalfa. In addition, to identify specific gene modules and hub genes in response to alfalfa cold stress, we applied weighted gene co-expression network (WGCNA) analyses to the RNA-seq data. Our results indicate that the modules of genes that focus on the ATPase complex, ribosome biogenesis, are more likely to be involved in the alfalfa response to cold stress. It is important to note that we identified two fibronectin (FIB) genes as hub genes in alfalfa in response to cold stress and that they negatively regulate alfalfa response to chilling stress, and it is possible that dormant alfalfa is more effective at down-regulating FIB expression and therefore more resistant to cold stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...