Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Sci Rep ; 14(1): 16152, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997295

ABSTRACT

Despite extensive research on the relationship between choline and cardiovascular disease (CVD), conflicting findings have been reported. We aim to investigate the relationship between choline and CVD. Our analysis screened a retrospective cohort study of 14,663 participants from the National Health and Nutrition Examination Survey conducted between 2013 and 2018. Propensity score matching and restricted cubic splines was used to access the association between choline intake and the risk of CVD. A two-sample Mendelian randomization (MR) analysis was conducted to examine the potential causality. Additionally, sets of single cell RNA-sequencing data were extracted and analyzed, in order to explore the role of choline metabolism pathway in the progression and severity of the CVD and the underlying potential mechanisms involved. The adjusted odds ratios and 95% confidence intervals for stroke were 0.72 (0.53-0.98; p = 0.035) for quartile 3 and 0.54 (0.39-0.75; p < 0.001) for quartile 4. A stratified analysis revealed that the relationship between choline intake and stroke varied among different body mass index and waist circumference groups. The results of MR analysis showed that choline and phosphatidylcholine had a predominantly negative causal effect on fat percentage, fat mass, and fat-free mass, while glycine had opposite effects. Results from bioinformatics analysis revealed that alterations in the choline metabolism pathway following stroke may be associated with the prognosis. Our study indicated that the consumption of an appropriate quantity of choline in the diet may help to protect against CVD and the effect may be choline-mediated, resulting in a healthier body composition. Furthermore, the regulation of the choline metabolism pathway following stroke may be a promising therapeutic target.


Subject(s)
Body Composition , Cardiovascular Diseases , Choline , Humans , Choline/administration & dosage , Choline/metabolism , Male , Female , Middle Aged , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/metabolism , Retrospective Studies , Mendelian Randomization Analysis , Adult , Body Mass Index , Aged , Nutrition Surveys , Risk Factors , Stroke/metabolism , Stroke/prevention & control
2.
J Adolesc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976404

ABSTRACT

INTRODUCTION: Research on heterogeneous pathways in school-to-work transitions (SWT), particularly longitudinal research, has been limited, as have empirical studies examining effective interventions for facilitating multiple SWT pathways among non-engaged youth (NEY), who are generally at risk of being not in education, employment, or training (NEET). METHODS: To develop a typology of SWT pathways, we conducted sequence analysis with longitudinal data from a sample of 630 NEY aged 14-29 (M = 19.78; 63.65% males) in Hong Kong during a 22-month period beginning in September 2020. We also performed multinomial logistic regressions to assess the impact of career and life development (CLD) interventions on SWT outcomes. RESULTS: Our analysis yielded a fivefold typology of SWT pathways: the Employment/Entrepreneurship cluster (31.27%), the Vocational Education and Training cluster (13.49%), the Generic Education cluster (16.83%), the Serious Leisure Development cluster (15.24%), and the long-term NEET cluster (23.17%). NEY in the intervention group receiving CLD services, inspired by the expanded notion of work (ENOW) and youth development and intervention framework (YDIF), demonstrated significantly higher likelihoods of being in the Employment/Entrepreneurship (OR = 34.5, 95% CI [10.53, 105.08]), Generic Education (OR = 3.74, 95% CI [1.81, 7.74]), Vocational Education and Training (OR = 1.55, 95% CI [1.05, 6.26]), and Serious Leisure Development (OR = 1.77, 95% CI [1.04, 4.46]) clusters than the long-term NEET cluster. CONCLUSIONS: Our findings highlight the dynamic, heterogeneous nature of NEY's CLD journeys, including that CLD interventions based on ENOW-YDIF have had a beneficial effect on NEY's multiple SWT pathways.

3.
Article in English | MEDLINE | ID: mdl-38702152

ABSTRACT

Objective: To investigate the effect of emergency plans and first aid procedures on injury control and precise treatment in patients with acute traumatic cervical spinal cord injury. Given the challenges in managing acute traumatic cervical spinal cord injuries and the need for efficient emergency plans and first aid procedures, the importance of this study is self-evident. Methods: A total of 103 patients with acute traumatic cervical spinal cord injury were enrolled in our study from January 2017 to December 2022, and these patients were divided into two groups according to the time of admission: 51 cases from January 2017 to December 2019 were in the control group, and 52 cases from January 2020 to December 2022 were in the study group. The control group was given routine emergency care. The study group received emergency plans and first aid procedures that included rapid assessment, optimized patient handling and transport, and immediate medical intervention. We compared the International Classification of Functioning, Disability and Health (ICF) scores, the Short Form Health Survey (SF-36) scores, the Activities of Daily Living (ADL) scores, and the occurrence of adverse events 3 months after rescue between the two groups. Results: The study group demonstrated significantly shorter times for prehospital emergency rescue, waiting time upon admission, time from admission to treatment, mechanical ventilation duration, and ICU stay when compared to the control group (P < .05). The intubation rate and mortality rate in the research group were 28.85% and 11.54%, respectively, compared to 31.37% and 13.73% in the control group, with no statistically significant differences (P > .05). Three months after the rescue, the study group showed significantly lower scores in environmental factors, activities and participation, body structure, and body function compared to the control group (P < .05). Three months after the rescue, the research group had significantly higher SF-36 scores (P < .05), and their ADL scores were significantly lower than those of the control group (P < .05). The research group had an adverse event rate of 3.85%, significantly lower than the control group's rate of 19.61% (P < .05). The study group experienced improvements in emergency response and hospital procedure times, higher SF-36 and ADL scores, and lower rates of adverse events, suggesting significant potential for improving patient outcomes in cases of acute traumatic cervical spinal cord injury. This demonstrates the effectiveness of the emergency plans that have been implemented and may influence the approach to emergency medical care in similar situations in the future. Conclusions: Emergency plans and first aid procedures can effectively shorten the first aid time, promote rehabilitation, reduce adverse events, and improve the quality of daily life in patients with acute traumatic cervical spinal cord injury. Based on these findings, future practice or policy may need to be adjusted to further enhance patient care quality.

4.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38729764

ABSTRACT

Intracerebral hemorrhage (ICH), the most common subtype of hemorrhagic stroke, leads to cognitive impairment and imposes significant psychological burdens on patients. Hippocampal neurogenesis has been shown to play an essential role in cognitive function. Our previous study has shown that tetrahydrofolate (THF) promotes the proliferation of neural stem cells (NSCs). However, the effect of THF on cognition after ICH and the underlying mechanisms remain unclear. Here, we demonstrated that administration of THF could restore cognition after ICH. Using Nestin-GFP mice, we further revealed that THF enhanced the proliferation of hippocampal NSCs and neurogenesis after ICH. Mechanistically, we found that THF could prevent ICH-induced elevated level of PTEN and decreased expressions of phosphorylated AKT and mTOR. Furthermore, conditional deletion of PTEN in NSCs of the hippocampus attenuated the inhibitory effect of ICH on the proliferation of NSCs and abnormal neurogenesis. Taken together, these results provide molecular insights into ICH-induced cognitive impairment and suggest translational clinical therapeutic strategy for hemorrhagic stroke.


Subject(s)
Cognitive Dysfunction , Hippocampus , Neural Stem Cells , Neurogenesis , PTEN Phosphohydrolase , Signal Transduction , Tetrahydrofolates , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , PTEN Phosphohydrolase/metabolism , Male , Signal Transduction/drug effects , Signal Transduction/physiology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Tetrahydrofolates/pharmacology , Mice , Hemorrhagic Stroke , Mice, Inbred C57BL , Mice, Transgenic , Cell Proliferation/drug effects
5.
Research (Wash D C) ; 7: 0355, 2024.
Article in English | MEDLINE | ID: mdl-38694202

ABSTRACT

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

6.
BMC Cancer ; 24(1): 564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711026

ABSTRACT

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Subject(s)
Drug Resistance, Neoplasm , Fluorouracil , Mouth Neoplasms , Wnt Signaling Pathway , Wnt3 Protein , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Drug Resistance, Neoplasm/genetics , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Wnt3 Protein/metabolism , Wnt3 Protein/genetics , beta Catenin/metabolism , beta Catenin/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic/drug effects , Antimetabolites, Antineoplastic/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
7.
J Hazard Mater ; 471: 134308, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631255

ABSTRACT

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.


Subject(s)
Camellia sinensis , Homeostasis , Plant Proteins , Zinc , Arabidopsis/genetics , Biodegradation, Environmental , Camellia sinensis/metabolism , Camellia sinensis/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Zinc/metabolism
8.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610564

ABSTRACT

In order to achieve efficient recognition of 3D images and reduce the complexity of network parameters, we proposed a novel 3D image recognition method combining deep neural networks with fractional-order Chebyshev moments. Firstly, the fractional-order Chebyshev moment (FrCM) unit, consisting of Chebyshev moments and the three-term recurrence relation method, is calculated separately using successive integrals. Next, moment invariants based on fractional order and Chebyshev moments are utilized to achieve invariants for image scaling, rotation, and translation. This design aims to enhance computational efficiency. Finally, the fused network embedding the FrCM unit (FrCMs-DNNs) extracts depth features to analyze the effectiveness from the aspects of parameter quantity, computing resources, and identification capability. Meanwhile, the Princeton Shape Benchmark dataset and medical images dataset are used for experimental validation. Compared with other deep neural networks, FrCMs-DNNs has the highest accuracy in image recognition and classification. We used two evaluation indices, mean square error (MSE) and peak signal-to-noise ratio (PSNR), to measure the reconstruction quality of FrCMs after 3D image reconstruction. The accuracy of the FrCMs-DNNs model in 3D object recognition was assessed through an ablation experiment, considering the four evaluation indices of accuracy, precision, recall rate, and F1-score.

9.
Theranostics ; 14(5): 1909-1938, 2024.
Article in English | MEDLINE | ID: mdl-38505607

ABSTRACT

Rationale: Hydrocephalus is a substantial complication after intracerebral hemorrhage (ICH) or intraventricular hemorrhage (IVH) that leads to impaired cerebrospinal fluid (CSF) circulation. Recently, brain meningeal lymphatic vessels (mLVs) were shown to serve as critical drainage pathways for CSF. Our previous studies indicated that the degradation of neutrophil extracellular traps (NETs) after ICH/IVH alleviates hydrocephalus. However, the mechanisms by which NET degradation exerts beneficial effects in hydrocephalus remain unclear. Methods: A mouse model of hydrocephalus following IVH was established by infusing autologous blood into both wildtype and Cx3cr1-/- mice. By studying the features and processes of the model, we investigated the contribution of mLVs and NETs to the development and progression of hydrocephalus following secondary IVH. Results: This study observed the widespread presence of neutrophils, fibrin and NETs in mLVs following IVH, and the degradation of NETs alleviated hydrocephalus and brain injury. Importantly, the degradation of NETs improved CSF drainage by enhancing the recovery of lymphatic endothelial cells (LECs). Furthermore, our study showed that NETs activated the membrane protein CX3CR1 on LECs after IVH. In contrast, the repair of mLVs was promoted and the effects of hydrocephalus were ameliorated after CX3CR1 knockdown and in Cx3cr1-/- mice. Conclusion: Our findings indicated that mLVs participate in the development of brain injury and secondary hydrocephalus after IVH and that NETs contribute to acute LEC injury and lymphatic thrombosis. CX3CR1 is a key molecule in NET-induced LEC damage and meningeal lymphatic thrombosis, which leads to mLV dysfunction and exacerbates hydrocephalus and brain injury. NETs may be a critical target for preventing the obstruction of meningeal lymphatic drainage after IVH.


Subject(s)
Brain Injuries , Extracellular Traps , Hydrocephalus , Thrombosis , Mice , Animals , Extracellular Traps/metabolism , Endothelial Cells/metabolism , Cerebral Hemorrhage/complications , Hydrocephalus/complications , Hydrocephalus/metabolism
10.
Redox Biol ; 71: 103086, 2024 May.
Article in English | MEDLINE | ID: mdl-38367510

ABSTRACT

Hemorrhagic stroke, specifically intracerebral hemorrhage (ICH), has been implicated in the development of persistent cognitive impairment, significantly compromising the quality of life for affected individuals. Nevertheless, the precise underlying mechanism remains elusive. Here, we report for the first time that the accumulation of iron within the hippocampus, distal to the site of ICH in the striatum, is causally linked to the observed cognitive impairment with both clinical patient data and animal model. Both susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) demonstrated significant iron accumulation in the hippocampus of ICH patients, which is far from the actual hematoma. Logistical regression analysis and multiple linear regression analysis identified iron level as an independent risk factor with a negative correlation with post-ICH cognitive impairment. Using a mouse model of ICH, we demonstrated that iron accumulation triggers an excessive activation of neural stem cells (NSCs). This overactivation subsequently leads to the depletion of the NSC pool, diminished neurogenesis, and the onset of progressive cognitive dysfunction. Mechanistically, iron accumulation elevated the levels of reactive oxygen species (ROS), which downregulated the expression of Itga3. Notably, pharmacological chelation of iron accumulation or scavenger of aberrant ROS levels, as well as conditionally overexpressed Itga3 in NSCs, remarkably attenuated the exhaustion of NSC pool, abnormal neurogenesis and cognitive decline in the mouse model of ICH. Together, these results provide molecular insights into ICH-induced cognitive impairment, shedding light on the value of maintaining NSC pool in preventing cognitive dysfunction in patients with hemorrhagic stroke or related conditions.


Subject(s)
Cognitive Dysfunction , Hemorrhagic Stroke , Neural Stem Cells , Animals , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hemorrhagic Stroke/metabolism , Hippocampus/metabolism , Iron/metabolism , Neural Stem Cells/metabolism , Quality of Life , Reactive Oxygen Species/metabolism , Mice
11.
Quant Imaging Med Surg ; 14(2): 1477-1492, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415169

ABSTRACT

Background: It has been suggested that biomechanical factors may influence plaque development. However, key determinants for assessing plaque vulnerability remain speculative. Methods: In this study, a two-dimensional (2D) structural mechanical analysis and a three-dimensional (3D) fluid-structure interaction (FSI) analysis were conducted based on intravascular optical coherence tomography (IV-OCT) and digital subtraction angiography (DSA) data sets. In the 2D study, 103 IV-OCT slices were analyzed. An in-depth morpho-mechanic analysis and a weighted least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify the crucial features related to plaque vulnerability via the tuning parameter (λ). In the 3D study, the coronary model was reconstructed by fusing the IV-OCT and DSA data, and a FSI analysis was subsequently performed. The relationship between vulnerable plaque and wall shear stress (WSS) was investigated. Results: The influential factors were selected using the minimum criteria (λ-min) and one-standard error criteria (λ-1se). In addition to the common vulnerable factor of the minimum fibrous cap thickness (FCTmin), four biomechanical factors were selected by λ-min, including the average/maximal displacements and average/maximal stress, and two biomechanical factors were selected by λ-1se, including the average/maximal displacements. Additionally, the positions of the vulnerable plaques were consistent with the sites of high WSS. Conclusions: Functional indices are crucial for plaque status assessment. An evaluation based on biomechanical simulations might provide insights into risk identification and guide therapeutic decisions.

12.
Aging (Albany NY) ; 16(2): 1077-1095, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38224491

ABSTRACT

BACKGROUND: Breast cancer susceptibility gene 1 (BRCA1) is a well-known gene that acts a vital role in suppressing the growth of tumors. Previous studies have primarily focused on the genetic mutations of BRCA1 and its association with hereditary breast invasive carcinoma (BRCA). However, little research has been done to investigate the relationship between BRCA1 and immune infiltrates and prognosis in BRCA. METHODS: We obtained the expression profiles and clinical information of patients with BRCA from the Cancer Genome Atlas (TCGA) database. The levels of the BRCA1 gene between BRCA tissues and normal breast tissues were compared through the Wilcoxon rank-sum test. Additionally, we performed WB and RT-qPCR techniques to detect the expression of BRCA1. We conducted functional enrichment analyses. Furthermore, we assessed immune cell infiltration using a single-sample gene set enrichment analysis. The methylation status of the BRCA1 gene was analyzed using the UALCAN and MethSurv databases. The Cox regression analysis and (KM) Kaplan-Meier method were employed to determine the prognostic value of BRCA1. In order to provide a practical tool for predicting the overall survival rates at different time points, we also constructed a nomogram. RESULTS: Our analysis revealed that the expression of BRCA1 was significantly higher in BRCA tissues compared to normal tissues. Furthermore, this increased level of BRCA1 was found to be associated with specific BRCA subtypes, including T2, stage II, ER positive, ect. Importantly, the overexpression of BRCA1 was shown to be a negative prognostic marker for the overall survival rates of BRCA patients. Moreover, low methylation status of the BRCA1 gene was related to a poorer prognosis. Furthermore, our results indicated that high levels of BRCA1 are related to a decrease in level of killer immune cells, such as natural killer (NK) cells, macrophages, CD8+ T cells, and plasma-like dendritic cells (pDCs) within the tumor microenvironment. CONCLUSIONS: Our study is the first to provide evidence indicating that the presence of BRCA1 can serve as a reliable marker for both diagnosing and determining the prognosis of BRCA. Moreover, BRCA1 acts as a crucial indicator of the cancer's potential to infiltrate and invade the immune system, which has important implications for developing targeted therapies in BRCA.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Humans , Female , Prognosis , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Computational Biology , Tumor Microenvironment/genetics , BRCA1 Protein/genetics
13.
J Inflamm Res ; 16: 5601-5612, 2023.
Article in English | MEDLINE | ID: mdl-38046402

ABSTRACT

Objective: Oxidative stress is involved in the mechanisms associated with temporomandibular joint (TMJ) diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial oxidative stress marker, but the specific mechanisms of its regulation in the early stages of mandibular condylar cartilage (MCC) degeneration remain unclear. This study aimed to explore the regulatory role of Nrf2 and its related oxidative stress signaling pathway in the early stage of MCC degeneration. Materials and Methods: Overloading force-induced MCC degeneration was performed in wild-type and Nrf2 knockout mice, as well as in mice after treatment with the Nrf2 activator cardamonin. Changes in MCC degeneration and the expression of oxidative stress markers in the corresponding situations were observed. Results: Nrf2 and NADPH oxidase 2 (NOX2) expression were elevated during early MCC degeneration induced by an overloading force. MCC degeneration was aggravated when Nrf2 was knocked out, accompanied by increased NOX2 and superoxide dismutase 2 (SOD2) expression. The MCC degeneration process was alleviated after cardamonin treatment, with activation of the Nrf2 pathway and decreased NOX2 and SOD2 expression. Conclusion: Early MCC degeneration is accompanied by mild oxidative stress progression. Activated Nrf2 and related pathways could alleviate the degeneration of MCC.

14.
ACS Appl Mater Interfaces ; 15(51): 59681-59692, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38086762

ABSTRACT

In the field of electromagnetic wave (EMW) absorption, carbon matrix materials based on metal-organic frameworks (MOFs) have drawn more interest as a result of their outstanding advantages, such as porous structure, lightweight, controlled morphology, etc. However, how to broaden the effective absorption bandwidth [EAB; reflection loss (RL) ≤ -10 dB] is still a challenge. In this paper, large microsphere structures of a Co/C composite composed of small particle clusters were successfully prepared by the solvothermal method and annealing treatment. At a filling ratio of 40 wt %, the Co/C composite shows attractive microwave absorption (MA) performance after being annealed at 600 °C in an atmosphere of argon. With an EAB of 6.32 GHz (9.92-16.24 GHz) and a thickness of just 2.57 mm, the minimum RL can be attained at -54.55 dB. Most importantly, the EAB can attain 7.12 GHz (10.88-18.0 GHz) when the thickness is 2.38 mm, which is larger than that of the majority of MOF-derived composites. The superior MA performance is strongly related to excellent impedance matching and a higher attenuation constant. This study provides a simple strategy for synthesizing a MOF-derived Co/C composite with a wide EAB.

15.
J Nanobiotechnology ; 21(1): 445, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001440

ABSTRACT

Tissue damage and aging lead to dysfunction, disfigurement, and trauma, posing significant global challenges. Creating a regenerative microenvironment to resist external stimuli and induce stem cell differentiation is essential. Plant-derived nanovesicles (PDNVs) are naturally bioactive lipid bilayer nanovesicles that contain proteins, lipids, ribonucleic acid, and metabolites. They have shown potential in promoting cell growth, migration, and differentiation into various types of tissues. With immunomodulatory, microbiota regulatory, antioxidant, and anti-aging bioactivities, PDNVs are valuable in resisting external stimuli and facilitating tissue repair. The unique structure of PDNVs provides an optimal platform for drug encapsulation, and surface modifications enhance their stability and specificity. Moreover, by employing synergistic administration strategies, PDNVs can maximize their therapeutic potential. This review summarized the progress and prospects of PDNVs as regenerative tools, provided insights into their selection for repair activities based on existing studies, considered the key challenge for clinical application, and anticipated their continued prominent role in the field of biomedicine.


Subject(s)
Cell Differentiation , Nanoparticles , Plants , Plants/chemistry , Lipid Bilayers
16.
Sci Rep ; 13(1): 18667, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907629

ABSTRACT

At present, the effects of chronic ankle instability (CAI) on the biomechanics of the ankle joint in the three-step layup of basketball players are not clear. This work aims to thoroughly investigate the impact of CAI on the biomechanical characteristics of the ankle during the execution of a three-step layup in basketball players. Thirty male basketball players were stratified into distinct groups-namely, a CAI group and a non-CAI group-comprising 15 individuals each, based on the presence or absence of CAI. Demographic attributes, including age, weight, height, and the Cumberland Ankle Instability Tool (CAIT) score, were subjected to rigorous statistical examination within both athlete cohorts. The research employed four Whistler 9281CA 3D force measuring platforms (Switzerland), recording at 1000 Hz, in conjunction with eight camera motion analysis systems (USA), functioning at a frequency of 200 Hz. The study recorded maximal plantarflexion angle, inversion angle, dorsiflexion angle, and peak ankle dorsiflexion moment across the subjects during the distinct phases of push-off, landing, and the ensuing landing period. The findings notably exhibited that within the context of the one-foot push-off phase, the maximum ankle inversion angle was notably diminished in the CAI group as contrasted with the non-CAI group, demonstrating statistical significance (t = - 3.006, P < 0.01). The CAI group exhibited a lesser alteration in ankle inversion angle compared to the non-CAI group. Notably, during the one-foot landing period, the CAI group demonstrated a significantly greater maximum ankle inversion angle in contrast to the non-CAI group (t = 8.802, P < 0.001). Furthermore, the CAI group displayed a substantially larger maximum dorsiflexion angle at the ankle joint compared to the non-CAI group (t = 2.265, P < 0.05). Additionally, the CAI group exhibited a prolonged peak time for ankle dorsiflexion moment as compared to the non-CAI group (t = - 2.428, P < 0.05). Collectively, the findings elucidated a reduction in the maximum ankle joint inversion angle during the one-foot push-off phase in individuals with CAI. Furthermore, increased maximum inversion angle and maximum dorsiflexion angle of the ankle joint were observed during the one-foot landing period, alongside a lengthening of the peak time of ankle dorsiflexion moment. These results contribute valuable insights into the selection of training methodologies for basketball players afflicted by CAI.


Subject(s)
Basketball , Joint Instability , Male , Humans , Ankle , Ankle Joint , Biomechanical Phenomena , Lower Extremity , Chronic Disease
17.
Environ Sci Technol ; 57(38): 14482-14492, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37699122

ABSTRACT

It is critical to discover a non-noble metal catalyst with high catalytic activity capable of replacing palladium in electrochemical reduction. In this work, a highly efficient single-atom Co-N/C catalyst was synthesized with metal-organic frameworks (MOFs) as a precursor for electrochemical dehalogenation. X-ray absorption spectroscopy (XAS) revealed that Co-N/C exhibited a Co-N4 configuration, which had more active sites and a faster charge-transfer rate and thus enabled the efficient removal of florfenicol (FLO) at a wide pH, achieving a rate constant 3.5 and 2.1 times that of N/C and commercial Pd/C, respectively. The defluorination and dechlorination efficiencies were 67.6 and 95.6%, respectively, with extremely low Co leaching (6 µg L-1), low energy consumption (22.7 kWh kg-1), and high turnover frequency (TOF) (0.0350 min-1), demonstrating excellent dehalogenation performance. Spiking experiments and density functional theory (DFT) verified that Co-N4 was the active site and had the lowest energy barrier for forming atomic hydrogen (H*) (ΔGH*). Capture experiments, electron paramagnetic resonance (EPR), electrochemical tests, and in situ Fourier transform infrared (FTIR) proved that H* and direct electron transfer were responsible for dehalogenation. Toxicity assessment indicated that FLO toxicity decreased significantly after dehalogenation. This work develops a non-noble metal catalyst with broad application prospects in electrocatalytic dehalogenation.


Subject(s)
Cobalt , Palladium , Catalysis , Electron Spin Resonance Spectroscopy
18.
Phys Med Biol ; 68(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37774717

ABSTRACT

Objective.Type-b aortic dissection (AD) is a life-threatening cardiovascular disease and the primary treatment is thoracic endovascular aortic repair (TEVAR). Due to the lack of a rapid and accurate segmentation technique, the patient-specific postoperative AD model is unavailable in clinical practice, resulting in impracticable 3D morphological and hemodynamic analyses during TEVAR assessment. This work aims to construct a deep learning-based segmentation framework for postoperative type-b AD.Approach.The segmentation is performed in a two-stage manner. A multi-class segmentation of the contrast-enhanced aorta, thrombus (TH), and branch vessels (BV) is achieved in the first stage based on the cropped image patches. True lumen (TL) and false lumen (FL) are extracted from a straightened image containing the entire aorta in the second stage. A global-local fusion learning mechanism is designed to improve the segmentation of TH and BR by compensating for the missing contextual features of the cropped images in the first stage.Results.The experiments are conducted on a multi-center dataset comprising 133 patients with 306 follow-up images. Our framework achieves the state-of-the-art dice similarity coefficient (DSC) of 0.962, 0.921, 0.811, and 0.884 for TL, FL, TH, and BV, respectively. The global-local fusion learning mechanism increases the DSC of TH and BV by 2.3% (p< 0.05) and 1.4% (p< 0.05), respectively, based on the baseline. Segmenting TH in stage 1 can achieve significantly better DSC for FL (0.921 ± 0.055 versus 0.857 ± 0.220,p< 0.01) and TH (0.811 ± 0.137 versus 0.797 ± 0.146,p< 0.05) than in stage 2. Our framework supports more accurate vascular volume quantifications compared with previous segmentation model, especially for the patients with enlarged TH+FL after TEVAR, and shows good generalizability to different hospital settings.Significance.Our framework can quickly provide accurate patient-specific AD models, supporting the clinical practice of 3D morphological and hemodynamic analyses for quantitative and more comprehensive patient-specific TEVAR assessments.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Blood Vessel Prosthesis Implantation , Deep Learning , Endovascular Procedures , Humans , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/surgery , Aortic Dissection/diagnostic imaging , Aortic Dissection/surgery , Retrospective Studies , Treatment Outcome
19.
Biomed Pharmacother ; 167: 115491, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722187

ABSTRACT

The Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the standard first-line therapy for EGFR-mutated NSCLC. However, long-term clinical treatment often leads to acquired drug resistance, making NSCLC refractory. Therefore, it is essential to design new EGFR inhibitors as potential drugs against NSCLC. This study reports on a novel quinazoline-based compound called YS-363 that acts as a new EGFR inhibitor. YS-363 demonstrated potent inhibition against both wild-type and L858R mutant forms of EGFR with IC50 values of 0.96 nM and 0.67 nM, respectively. Additionally, YS-363 had a reversible inhibitory effect on cellular EGFR signaling, had excellent inhibitory activity on cell proliferation and migration, and induced G0/G1 cell cycle arrest and apoptosis. In xenograft models dependent on EGFR signaling, oral administration of YS-363 substantially suppressed tumor growth by inhibiting this pathway. In summary, YS-363 is a promising selective reversible inhibitor with a novel quinazoline scaffold that can potentially develop more effective anti-lung cancer agents targeting EGFR in patients who have developed resistance to current therapies such as TKIs like gefitinib or erlotinib.

20.
ACS Nano ; 17(14): 13917-13937, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37429012

ABSTRACT

Inflammatory infiltration and bone destruction are important pathological features of rheumatoid arthritis (RA), which originate from the disturbed niche of macrophages. Here, we identified a niche-disrupting process in RA: due to overactivation of complement, the barrier function of VSIg4+ lining macrophages is disrupted and mediates inflammatory infiltration within the joint, thereby activating excessive osteoclastogenesis and bone resorption. However, complement antagonists have poor biological applications due to superphysiologic dose requirements and inadequate effects on bone resorption. Therefore, we developed a dual-targeted therapeutic nanoplatform based on the MOF framework to achieve bone-targeted delivery of the complement inhibitor CRIg-CD59 and pH-responsive sustained release. The surface-mineralized zoledronic acid (ZA) of ZIF8@CRIg-CD59@HA@ZA targets the skeletal acidic microenvironment in RA, and the sustained release of CRIg-CD59 can recognize and prevent the complement membrane attack complex (MAC) from forming on the surface of healthy cells. Importantly, ZA can inhibit osteoclast-mediated bone resorption, and CRIg-CD59 can promote the repair of the VSIg4+ lining macrophage barrier to achieve sequential niche remodeling. This combination therapy is expected to treat RA by reversing the core pathological process, circumventing the pitfalls of traditional therapy.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/pharmacology , Delayed-Action Preparations/pharmacology , Macrophages/pathology , Osteoclasts/pathology , Zoledronic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...