Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
3.
Poult Sci ; 103(3): 103376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228059

ABSTRACT

Wenchang chicken, a prized local breed in Hainan Province of China renowned for its exceptional adaptability to tropical environments and good meat quality, is deeply favored by the public. However, an insufficient understanding of its population architecture and the unclear genetic basis that governs its typical attributes have posed challenges in the protection and breeding of this precious breed. To address these gaps, we conducted whole-genome resequencing on 200 Wenchang chicken samples derived from 10 distinct strains, and we gathered data on an array of 21 phenotype traits. Population genomics analysis unveiled distinctive population structures in Wenchang chickens, primarily attributed to strong artificial selection for different feather colors. Selection sweep analysis identified a group of candidate genes, including PCDH9, DPF3, CDIN1, and SUGCT, closely linked to adaptations that enhance resilience in tropical island habitats. Genome-wide association studies (GWAS) highlighted potential candidate genes associated with diverse feather color traits, encompassing TYR, RAB38, TRPM1, GABARAPL2, CDH1, ZMIZ1, LYST, MC1R, and SASH1. Through the comprehensive analysis of high-quality genomic and phenotypic data across diverse Wenchang chicken resource groups, this study unveils the intricate genetic backgrounds and population structures of Wenchang chickens. Additionally, it identifies multiple candidate genes linked to environmental adaptation, feather color variations, and production traits. These insights not only provide genetic reference for the purification and breeding of Wenchang chickens but also broaden our understanding of the genetic basis of phenotypic diversity in chickens.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Genome-Wide Association Study/veterinary , Genomics , Phenotype , Serogroup
4.
World J Clin Cases ; 12(1): 130-135, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38292631

ABSTRACT

BACKGROUND: Mycosis fungoides is the most common primary cutaneous T-cell lymphoma, whereas generalized erythroderma is rare. In this report, we describe a case of mycosis fungoides with generalized erythroderma using complete clinical data and [18F]fluoroDglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images. CASE SUMMARY: Systemic skin redness with desquamation for three years confirmed mycosis fungoides within one month. The patient underwent left axillary lymphadenectomy biopsy; pathological biopsy suggested abnormal T-cell lesions consistent with mycosis fungoides involving lymph nodes. The patient received methotrexate, 5 mg twice weekly, as part of their chemotherapy regimen. Patients January half after discharge, no obvious cause of high fever, left axillary lymph nodes with red heat pain, and rupture entered our hospital for treatment. CONCLUSION: The 18F-FDG PET/CT is essential for early diagnosis and timely treatment.

5.
Sci China Life Sci ; 67(4): 765-777, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110796

ABSTRACT

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through "a dual finger" catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.


Subject(s)
Gene Expression Regulation, Neoplastic , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Introns
7.
BMC Biol ; 21(1): 208, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798721

ABSTRACT

BACKGROUND: Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS: We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS: Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.


Subject(s)
Animal Husbandry , Asian People , Diet , Milk , Animals , Dogs/genetics , Humans , Tibet , Ruminants
8.
Mol Psychiatry ; 28(9): 3739-3750, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37848710

ABSTRACT

Despite intensive studies in modeling neuropsychiatric disorders especially autism spectrum disorder (ASD) in animals, many challenges remain. Genetic mutant mice have contributed substantially to the current understanding of the molecular and neural circuit mechanisms underlying ASD. However, the translational value of ASD mouse models in preclinical studies is limited to certain aspects of the disease due to the apparent differences in brain and behavior between rodents and humans. Non-human primates have been used to model ASD in recent years. However, a low reproduction rate due to a long reproductive cycle and a single birth per pregnancy, and an extremely high cost prohibit a wide use of them in preclinical studies. Canine model is an appealing alternative because of its complex and effective dog-human social interactions. In contrast to non-human primates, dog has comparable drug metabolism as humans and a high reproduction rate. In this study, we aimed to model ASD in experimental dogs by manipulating the Shank3 gene as SHANK3 mutations are one of most replicated genetic defects identified from ASD patients. Using CRISPR/Cas9 gene editing, we successfully generated and characterized multiple lines of Beagle Shank3 (bShank3) mutants that have been propagated for a few generations. We developed and validated a battery of behavioral assays that can be used in controlled experimental setting for mutant dogs. bShank3 mutants exhibited distinct and robust social behavior deficits including social withdrawal and reduced social interactions with humans, and heightened anxiety in different experimental settings (n = 27 for wild-type controls and n = 44 for mutants). We demonstrate the feasibility of producing a large number of mutant animals in a reasonable time frame. The robust and unique behavioral findings support the validity and value of a canine model to investigate the pathophysiology and develop treatments for ASD and potentially other psychiatric disorders.


Subject(s)
Autism Spectrum Disorder , Animals , Dogs , Humans , Autism Spectrum Disorder/genetics , CRISPR-Cas Systems/genetics , Disease Models, Animal , Gene Editing , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
9.
iScience ; 26(8): 107383, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37609638

ABSTRACT

Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is influenced by genetic factors. The genetic signal rs10516526 in the glutathione S-transferase C-terminal domain containing (GSTCD) gene is a highly significant and reproducible signal associated with lung function and COPD on chromosome 4q24. In this study, comprehensive bioinformatics analyses and experimental verifications were detailly implemented to explore the regulation mechanism of rs10516526 and GSTCD in COPD. The results suggested that low expression of GSTCD was associated with COPD (p = 0.010). And C-Jun and CREB1 transcription factors were found to be essential for the regulation of GSTCD by rs80245547 and rs72673891. Moreover, rs80245547T and rs72673891G had a stronger binding ability to these transcription factors, which may promote the allele-specific long-range enhancer-promoter interactions on GSTCD, thus making COPD less susceptible. Our study provides a new insight into the relationship between rs10516526, GSTCD, and COPD.

10.
Front Cell Neurosci ; 17: 1201295, 2023.
Article in English | MEDLINE | ID: mdl-37538851

ABSTRACT

Social isolation (SI) exerts diverse adverse effects on brain structure and function in humans. To gain an insight into the mechanisms underlying these effects, we conducted a systematic analysis of multiple brain regions from socially isolated and group-housed dogs, whose brain and behavior are similar to humans. Our transcriptomic analysis revealed reduced expression of myelin-related genes specifically in the white matter of prefrontal cortex (PFC) after SI during the juvenile stage. Despite these gene expression changes, myelin fiber organization in PFC remained unchanged. Surprisingly, we observed more mature oligodendrocytes and thicker myelin bundles in the somatosensory parietal cortex in socially isolated dogs, which may be linked to an increased expression of ADORA2A, a gene known to promote oligodendrocyte maturation. Additionally, we found a reduced expression of blood-brain barrier (BBB) structural components Aquaporin-4, Occludin, and Claudin1 in both PFC and parietal cortices, indicating BBB disruption after SI. In agreement with BBB disruption, myelin-related sphingolipids were increased in cerebrospinal fluid in the socially isolated group. These unexpected findings show that SI induces distinct alterations in oligodendrocyte development and shared disruption in BBB integrity in different cortices, demonstrating the value of dogs as a complementary animal model to uncover molecular mechanisms underlying SI-induced brain dysfunction.

11.
Genome Biol ; 24(1): 187, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582787

ABSTRACT

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Subject(s)
Wolves , Dogs , Animals , Wolves/genetics , Chromosome Mapping , Alleles , Polymorphism, Single Nucleotide , Nucleotides , Demography
12.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37433053

ABSTRACT

Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.


Subject(s)
Wolves , Dogs , Animals , Wolves/genetics , Multifactorial Inheritance , Genome , Genomics , Base Sequence
13.
Microb Genom ; 9(7)2023 07.
Article in English | MEDLINE | ID: mdl-37489884

ABSTRACT

African swine fever (ASF) is a contagious viral disease that affects domestic pigs and wild boars, causing significant economic losses globally. After the first Nigerian outbreak in 1997, there have been frequent reports of ASF in pig-producing regions in the country. To facilitate control, it is important to understand the genotype and phylogenetic relationship of ASF viruses (ASFVs). Recent genetic analysis of Nigerian ASFV isolates has revealed the presence of both genotypes I and II; this is based on analysis of a few selected genes. Phylogenetic analysis of ASFV whole genomes highlights virus origins and evolution in greater depth. However, there is currently no information on the ASFV genome from Nigerian isolates. Two ASFV-positive samples were detected during a random survey of 150 Nigerian indigenous pig samples collected in 2016. We assembled near-complete genomes of the two ASFV-positive samples using in-solution hybrid capture sequencing. The genome-wide phylogenetic tree assigned these two genomes into p72 genotype I, particularly close to the virulent Benin 97/1 strain. The two ASFVs share 99.94 and 99.92 % genomic sequence identity to Benin97/1. This provides insight into the origin and relationship of ASFV strains from Nigeria and Italy. The study reports for the first time the determination of near-complete genomes of ASFV using in-solution hybrid capture sequencing, which represents an important advance in understanding the global evolutionary landscape of ASFVs.


Subject(s)
African Swine Fever , Swine , Animals , Phylogeny , Genotype , Genomics , Disease Outbreaks , Sus scrofa
16.
Natl Sci Rev ; 10(5): nwac034, 2023 May.
Article in English | MEDLINE | ID: mdl-37265505

ABSTRACT

The onset of various kidney diseases has been reported after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. However, detailed clinical and pathological features are lacking. We screened and analyzed patients with newly diagnosed kidney diseases after inactivated SARS-CoV-2 vaccination in Peking University First Hospital from January 2021 to August 2021, and compared them with the reported cases in the literature. We obtained samples of blood, urine and renal biopsy tissues. Clinical and laboratory information, as well as light microscopy, immunostaining and ultrastructural observations, were described. The SARS-CoV-2 spike protein and nucleoprotein were stained using the immunofluorescence technique in the kidney biopsy samples. SARS-CoV-2 specific antibodies were tested using magnetic particle chemiluminescence immunoassay. The study group included 17 patients with a range of conditions including immune-complex-mediated kidney diseases (IgA nephropathy, membranous nephropathy and lupus nephritis), podocytopathy (minimal change disease and focal segmental glomerulosclerosis) and others (antineutrophil-cytoplasmic-antibody-associated vasculitis, anti-glomerular basement membrane nephritis, acute tubulointerstitial nephritis and thrombotic microangiopathy). Seven patients (41.18%) developed renal disease after the first dose and ten (58.82%) after the second dose. The kidney disease spectrum as well as clinicopathological features are similar across different types of SARS-CoV-2 vaccines. We found no definitive evidence of SARS-CoV-2 spike protein or nucleoprotein deposition in the kidney biopsy samples. Seropositive markers implicated abnormal immune responses in predisposed individuals. Treatment and follow-up (median = 86 days) showed that biopsy diagnosis informed treatment and prognosis in all patients. In conclusion, we observed various kidney diseases following SARS-CoV-2 vaccine administration, which show a high consistency across different types of SARS-CoV-2 vaccines. Our findings provide evidence against direct vaccine protein deposition as the major pathomechanism, but implicate abnormal immune responses in predisposed individuals. These findings expand our understanding of SARS-CoV-2 vaccine renal safety.

17.
Science ; 380(6648): 913-924, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37262173

ABSTRACT

Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.


Subject(s)
Evolution, Molecular , Primates , Animals , Humans , Genome , Genomics , Phylogeny , Primates/anatomy & histology , Primates/classification , Primates/genetics , Gene Rearrangement , Brain/anatomy & histology
18.
Natl Sci Rev ; 10(4): nwac174, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124465

ABSTRACT

Highly specialized myrmecophagy (ant- and termite-eating) has independently evolved multiple times in species of various mammalian orders and represents a textbook example of phenotypic evolutionary convergence. We explored the mechanisms involved in this unique dietary adaptation and convergence through multi-omic analyses, including analyses of host genomes and transcriptomes, as well as gut metagenomes, in combination with validating assays of key enzymes' activities, in the species of three mammalian orders (anteaters, echidnas and pangolins of the orders Xenarthra, Monotremata and Pholidota, respectively) and their relatives. We demonstrate the complex and diverse interactions between hosts and their symbiotic microbiota that have provided adaptive solutions for nutritional and detoxification challenges associated with high levels of protein and lipid metabolisms, trehalose degradation, and toxic substance detoxification. Interestingly, we also reveal their spatially complementary cooperation involved in degradation of ants' and termites' chitin exoskeletons. This study contributes new insights into the dietary evolution of mammals and the mechanisms involved in the coordination of physiological functions by animal hosts and their gut commensals.

19.
Neurosurg Rev ; 46(1): 76, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36967440

ABSTRACT

Primary intracranial Rosai-Dorfman disease (PIRDD) is considered a nonmalignant nonneoplastic entity, and the outcome is unclear due to its rarity. The study aimed to elaborate the clinic-radiological features, treatment strategies, and progression-free survival (PFS) in patients with PIRDD. Patients with pathologically confirmed PIRDD in our institute were reviewed. Literature of PIRDD, updated until December 2019, was systematically searched in 7 databases (Embase, PubMed, Cochrane database, Web of Science, Wanfang Data Knowledge Service Platform, the VIP Chinese Science and Technology Periodical Database (VIP), and the China National Knowledge Infrastructure (CNKI)). These prior publication data were processed and used according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Clinical-radiological characteristics and adverse factors for PFS were evaluated in the pooled cohort. The pooled cohort of 124 cases (81 male and 43 female), with a mean age of 39.7 years, included 11 cases from our cohort and 113 cases from 80 prior studies. Twenty-nine patients (23.4%) had multiple lesions. Seventy-four patients (59.7%) experienced gross total resection (GTR), 50 patients (40.3%) had non-GTR, 15 patients (12.1%) received postoperative adjuvant radiation, and 23 patients (18.5%) received postoperative steroids. A multivariate Cox regression revealed that GTR (HR = 4.52; 95% CI 1.21-16.86; p = 0.025) significantly improved PFS, and multiple lesions (p = 0.060) tended to increase the hazard of recurrence. Neither radiation (p = 0.258) nor steroids (p = 0.386) were associated with PFS. The overall PFS at 3, 5, and 10 years in the pooled cohort was 88.4%, 79.4%, and 70.6%, respectively. The PFS at 5 and 10 years in patients with GTR was 85.4% and 85.4%, respectively, which was 71.5% and 35.8%, respectively, in patients without GTR. Gross total resection significantly improved PFS and was recommended for PIRDD. Radiation and steroids were sometimes empirically administered for residual, multiple, or recurrent PIRDD, but the effectiveness remained arguable and required further investigation.Systematic review registration number: CRD42020151294.


Subject(s)
Histiocytosis, Sinus , Humans , Male , Female , Adult , Histiocytosis, Sinus/surgery , Progression-Free Survival , Radiotherapy, Adjuvant , Combined Modality Therapy , Neurosurgical Procedures , Retrospective Studies
20.
Mol Ecol Resour ; 23(5): 1124-1141, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36924341

ABSTRACT

DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Humans , Animals , Phylogeny , DNA Barcoding, Taxonomic/methods , Snakes/genetics , Electron Transport Complex IV/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...