Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 63(7): 967-980, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35536598

ABSTRACT

Plant High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) transporters have been predicted as membrane H+-K+ symporters in facilitating K+ uptake and distribution, while their role in seed production remains to be elucidated. In this study, we report that OsHAK26 is preferentially expressed in anthers and seed husks and located in the Golgi apparatus. Knockout of either OsHAK26 or plasma membrane located H+-K+ symporter gene OsHAK1 or OsHAK5 in both Nipponbare and Dongjin cultivars caused distorted anthers, reduced number and germination rate of pollen grains. Seed-setting rate assay by reciprocal cross-pollination between the mutants of oshak26, oshak1, oshak5 and their wild types confirmed that each HAK transporter is foremost for pollen viability, seed-setting and grain yield. Intriguingly, the pollens of oshak26 showed much thinner wall and were more vulnerable to desiccation than those of oshak1 or oshak5. In vitro assay revealed that the pollen germination rate of oshak5 was dramatically affected by external K+ concentration. The results suggest that the role of OsHAK26 in maintaining pollen development and fertility may relate to its proper cargo sorting for construction of pollen walls, while the role of OsHAK1 and OsHAK5 in maintaining seed production likely relates to their transcellular K+ transport activity.


Subject(s)
Oryza , Fertility , Gene Expression Regulation, Plant , Membrane Transport Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Potassium/metabolism
2.
J Virol Methods ; 261: 132-138, 2018 11.
Article in English | MEDLINE | ID: mdl-30142375

ABSTRACT

Mycoplasma bovis (MB) and bovine herpes virus 1 (BHV-1) are two important pathogens that cause bovine respiratory disease in the beef feedlot and dairy industries. The aim of this study was to develop and validate a duplex fluorescence-based loop-mediated isothermal amplification (DLAMP) assay for simultaneous detection of MB and BHV-1. Two sets of specific primers for each pathogen were designed to target the unique sequences of the MB uvrC gene and the BHV-1 gB gene. The inner primer for BHV-1 was synthesized with the fluorophore FAM at the 5' end to detect the BHV-1 gB gene, and the inner primer for MB was synthesized with the fluorophore CY5 at the 5' end to detect the MB uvrC gene. The DLAMP reaction conditions were optimized for rapid and specific detection of MB and BHV-1. The DLAMP assay developed here could specifically detect MB and BHV-1 without cross-reaction with other known non-target bovine pathogens. The sensitivity of this DLAMP assay was as low as 2 × 102 copies for recombinant plasmids containing the MB and BHV-1 target genes. In a detection test of 125 clinical samples, the positive rates for MB, BHV-1 and co-infection were 44.8%, 13.6% and 1.6%, respectively. Furthermore, the sensitivity and specificity of DLAMP were determined as 95%-96.6% and 100%, respectively, of those of field sample detection by the real-time polymerase chain reaction (PCR) assay recommended by the World Organisation for Animal Health. Overall, DLAMP provides a rapid, sensitive and specific assay for the identification of MB and BHV-1 in clinical specimens and for epidemiological surveillance.


Subject(s)
Cattle Diseases/diagnosis , Herpesviridae Infections/veterinary , Herpesvirus 1, Bovine/isolation & purification , Mycoplasma Infections/veterinary , Mycoplasma bovis/isolation & purification , Nucleic Acid Amplification Techniques/methods , Animals , Cattle , DNA Primers/genetics , Herpesviridae Infections/diagnosis , Herpesvirus 1, Bovine/genetics , Mycoplasma Infections/diagnosis , Mycoplasma bovis/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...