Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Waste Manag ; 177: 243-251, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350297

ABSTRACT

Traditional methods of producing organic fertilizers result in significant nutrient loss and greenhouse gas emissions, making it challenging to align with sustainable development and the achievement of net-zero emissions goals. Hydrothermal cracking, as a novel clean technology for the utilization of organic waste into fertilizer, has been extensively studied and refined in laboratory settings, but its large-scale industrial evaluation remains limited. This study investigates the properties and field application of hydrothermal cracking solid organic fertilizer (HCSOF) produced at a pilot scale with an annual output of 10,000 tons. The results indicate that the organic matter content and total nutrient content (TN + P2O5 + K2O) of HCSOF reached 50.6 % and 5.46 %, respectively, which are 20.6 % and 1.46 % higher than the standards for organic fertilizers in China. Additionally, contaminants such as pathogens and antibiotics in the product were completely eliminated. Elemental analysis and pore size distribution highlighted the unique adsorptive attributes of HCSOF, which showed significant effect in reducing soil ammonium nitrogen. Results from field trials indicate that the complete substitution of chemical fertilizers with HCSOF did not reduce corn yield, which remained at 9.03 t/ha. Particularly, compared to the exclusive use of chemical fertilizers, HCSOF treatments resulted in a 7.03 % and 4.70 % decrease in fresh corn lodging and disease incidence, respectively. Antibacterial tests further confirmed its ability to counter pathogens. This study provides robust evidence for scaling up hydrothermal cracking fertilizer production from laboratory to industrial levels. Future research should focus on multi-batch sampling and extended field experiments.


Subject(s)
Fertilizers , Zea mays , Adsorption , Anti-Bacterial Agents , China
2.
Adv Mater ; 36(18): e2307412, 2024 May.
Article in English | MEDLINE | ID: mdl-38251820

ABSTRACT

The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.

3.
Foods ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36613412

ABSTRACT

Imidacloprid is one of the most commonly used insecticides for managing pests, thus, improving the quality and yield of vegetables. The abuse/misuse of imidacloprid contaminates the environment and threatens human health. To reduce the risk, a colorimetric enzyme-linked immunoassay assay (Co-ELISA) and chemiluminescence enzyme-linked immunoassay assay (Cl-ELISA) were established to detect imidacloprid residues in vegetables. The linear range of Co-ELISA ranged between 1.56 µg/L and 200 µg/L with a limit of detection (LOD) of 1.56 µg/L. The values for Cl-ELISA were 0.19 µg/L to 25 µg/L with an LOD of 0.19 µg/L, which are lower than those of Co-ELISA. Fortifying Chinese cabbage, cucumber, and zucchini with imidacloprid at 10, 50, and 100 µg/L yielded recoveries between 81.7 and 117.6% for Co-ELISA and at 5, 10, and 20 µg/L yielded recoveries range from 69.7 to 120.6% for Cl-ELISA. These results indicate that Cl-ELISA has a high sensitivity and a rapid detection time, saving cost (antigen and antibody concentrations) and serving as a more efficient model for the rapid detection of imidacloprid residue.

4.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36004607

ABSTRACT

Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.

5.
Nat Commun ; 13(1): 3616, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750677

ABSTRACT

The temperature and pressure of the hydrothermal process occurring in a batch reactor are typically coupled. Herein, we develop a decoupled temperature and pressure hydrothermal system that can heat the cellulose at a constant pressure, thus lowering the degradation temperature of cellulose significantly and enabling the fast production of carbon sub-micron spheres. Carbon sub-micron spheres can be produced without any isothermal time, much faster compared to the conventional hydrothermal process. High-pressure water can help to cleave the hydrogen bonds in cellulose and facilitate dehydration reactions, thus promoting cellulose carbonization at low temperatures. A life cycle assessment based on a conceptual biorefinery design reveals that this technology leads to a substantial reduction in carbon emissions when hydrochar replacing fuel or used for soil amendment. Overall, the decoupled temperature and pressure hydrothermal treatment in this study provides a promising method to produce sustainable carbon materials from cellulose with a carbon-negative effect.


Subject(s)
Carbon , Cellulose , Carbon/chemistry , Hot Temperature , Soil , Temperature
6.
J Adv Res ; 37: 61-74, 2022 03.
Article in English | MEDLINE | ID: mdl-35499055

ABSTRACT

Background: Organophosphorus pesticides (OPs), as insecticides or acaricides, are widely used in agricultural products to ensure agricultural production. However, widespread use of OPs leads to environmental contamination and significant negative consequences on biodiversity, food security, and water resources. Therefore, developing a sensitive and rapid method to determine OPs residues in different matrices is necessary. Originally, the enzyme inhibition methods are often used as preliminary screens of OPs in crops. Many studies on the characteristic of Au nanomaterials have constantly been emerging in the past decade. Combined with anisotropic Au nanomaterials, enzyme inhibition methods have the advantages of high sensitivity, durability, and high stability. Aim of Review: This review aims to summarize the principles and strategies of gold (Au) nanomaterials in enzyme inhibition methods, including colorimetric (dispersion, particle size of Au nanomaterials) and fluorometric (fluorescence energy transfer, internal filtration effect) detection, and electrochemical sensing system (shape of Au nanomaterials, Au nanomaterials combined with other nanomaterials). The application of enzyme inhibition in agricultural products and research progress was also outlined. Next, this review illustrates the advantages of Au nanomaterial-based enzyme inhibition methods compared with conventional enzyme inhibition methods. The detection limits and linear range of colorimetric and fluorometric detection and electrochemical biosensors have also been provided. At last, key perspectives, trends, gaps, and future research directions are proposed. Key Scientific Concepts of Review: Herein, we introduced the technology of enzyme inhibition method based on Au nanomaterials for onsite and infield rapid detection of organophosphorus pesticide.


Subject(s)
Biosensing Techniques , Nanostructures , Pesticides , Agriculture , Biosensing Techniques/methods , Organophosphorus Compounds , Pesticides/analysis
7.
ACS Omega ; 7(10): 9087, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35309434

ABSTRACT

[This retracts the article DOI: 10.1021/acsomega.0c06270.].

8.
Front Nutr ; 9: 846333, 2022.
Article in English | MEDLINE | ID: mdl-35284432

ABSTRACT

The demand for Chinese chives is growing as they are also rich in vitamins, fiber, and sulfur nutrients. Chinese chives should be sprayed with imidacloprid to control pests and diseases to safeguard their yield and to meet the demands of East Asian consumers for Chinese chives. Overspraying of imidacloprid can lead to residues in Chinese chives, posing a severe risk to human health. To reduce the harmful effects of imidacloprid residues on humans, we investigated the imidacloprid dissipation pattern and the final residue on Chinese chives using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Good linearity (R 2= 0.9988), accuracy (expressed as recovery % of 78.34-91.17%), precision [expressed as relative SDs (RSDs) of 0.48-6.43%], and sensitivity [a limit of quantification (LOQ) ≤ 8.07 × 104 mg/kg] were achieved. The dissipation dynamics were consistent with the first-order kinetics, with a half-life of 2.92 days. The final residual levels on Chinese chives were 0.00923-0.166 mg/kg, which is lower than the maximum residue limits (MRLs) of 1 mg/kg for imidacloprid on Chinese chives. A risk assessment index of <1 indicates that Chinese chives are safe for consumption.

9.
Front Nutr ; 9: 820150, 2022.
Article in English | MEDLINE | ID: mdl-35198589

ABSTRACT

Carbendazim (CBZ), a systemic, broad-spectrum benzimidazole fungicide, is widely used to control fungal diseases in agricultural products. Its residues might pose risks to human health and the environment. Therefore, it is warranted to establish a rapid and reliable method for its residual quantification. Herein, we proposed a competitive assay that combined aptamer (DNA) specific recognition and bimetallic nanozyme gold@platinum (Au@Pt) catalysis to trace the CBZ residue. The DNA was labeled onto bimetallic nanozyme Au@Pt surface to produce Au@Pt probes (Au@Pt-DNA). The magnetic Fe3O4 was functionalized with a complementary strand of DNA (C-DNA) to form Fe3O4 probes (Fe3O4-C-DNA). Subsequently, the CBZ and the Fe3O4 probes competitively react with Au@Pt probes to form two Au@Pt-DNA biosensors (Au@Pt-ssDNA-CBZ and Au@Pt-dsDNA-Fe3O4). The Au@Pt-ssDNA-CBZ biosensor was designed for qualitative analysis through a naked-eye visualization strategy in the presence of CBZ. Meanwhile, Au@Pt-dsDNA-Fe3O4 biosensor was developed to quantitatively analyze CBZ using a multifunctional microplate reader. A competitive assay based on the dual-mode Au@Pt-DNA biosensors was established for onsite sensitive determination of CBZ. The limit of detection (LOD) and recoveries of the developed assay were 0.038 ng/mg and 71.88-110.11%, with relative standard deviations (RSDs) ranging between 3.15 and 10.91%. The assay demonstrated a good correlation with data acquired from liquid chromatography coupled with mass spectrometry/mass spectrometry analysis. In summary, the proposed competitive assay based on dual-mode Au@Pt-DNA biosensors might have a great potential for onsite sensitive detection of pesticides in agro-products.

10.
Foods ; 12(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613223

ABSTRACT

In this study, a novel composite material prepared by using deep eutectic solvent (tetrabutylammonium chloride-dodecanol, DES5) functionalized magnetic MWCNTs-ZIF-8 (MM/ZIF-8@DES5) was employed as an adsorbent for the magnetic solid-phase extraction of six pyrethroids from tea drinks. The characterization results show that MM/ZIF-8@DES5 possessed sufficient specific surface area and superparamagnetism, which could facilitate the rapid enrichment of pyrethroids from tea drink samples. The results of the optimization experiment indicated that DES5, which comprised tetrabutylammonium chloride and 1-dodecanol, was selected for the next experiment and that the adsorption properties of MM/ZIF-8@DES5 were higher than those of MM/ZIF-8 and M-MWCNTs. The validation results show that the method has a wide linear range (0.5-400 µg L-1, R2 ≥ 0.9905), low LOD (0.08-0.33 µg L-1), and good precision (intra-day RSD ≤ 5.6%, inter-day RSD ≤ 8.6%). The method was successfully applied to the determination of pyrethroids in three tea drink samples.

11.
Bioengineered ; 12(1): 8020-8030, 2021 12.
Article in English | MEDLINE | ID: mdl-34726120

ABSTRACT

Cisplatin (CDDP) has been widely used for glioblastoma treatment. miR-485-5p and E2F transcription factor 1 (E2F1) dysfunction has been reported in glioblastoma. Nonetheless, whether CDDP affects glioblastoma progression via the miR-485-5p-E2F1 axis requires investigation. The expression of miR-485-5p and E2F1 was investigated by quantitative real-time polymerase chain reaction or western blotting in glioblastoma tissues and cell lines. The interaction between miR-485-5p and E2F1 was confirmed using a luciferase assay. The malignancy of glioblastoma was detected using Cell Counting Kit-8, bromodeoxyuridine (BrdU), cell adhesion, flow cytometry, and transwell assays. We identified miR-485-5p downregulation and E2F1 upregulation in glioblastoma, and miR-485-5p inhibited cell growth and elevated cell apoptosis in glioblastoma cells after CDDP treatment. Moreover, miR-485-5p targeting E2F1 repressed cell growth and improved cell apoptosis in glioblastoma cells after CDDP treatment. Our study revealed that CDDP retarded glioblastoma cell development via the miR-485-5p-E2F1 axis, which may be a new direction for glioblastoma therapy.


Subject(s)
Brain Neoplasms/genetics , Cisplatin/pharmacology , E2F1 Transcription Factor/genetics , Glioblastoma/genetics , MicroRNAs/genetics , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Humans , Male
12.
Front Oncol ; 11: 661653, 2021.
Article in English | MEDLINE | ID: mdl-34532283

ABSTRACT

Chemotherapy combined with surgery is an important clinical treatment for glioma, but endogenous or acquired temozolomide (TMZ) resistance can lead to poor prognosis. microRNA (miR)-9-5p acts in biological function of glioma, but the drug resistance of miR-9-5p in glioma is under exploration. The study intended to test the molecular mechanism of miR-9-5p in glioma cells. MTT assay was applied to investigate the chemosensitivity enhancement of miR-9-5p on TMZ in glioma cells U87-TMZ and U251-TMZ, and in vivo experiments confirmed its role on tumor growth in nude mice. The results of double luciferase reporter gene assay, qRT-PCR and WB indicated that miR-9-5p directly targeted ABCC1 (ATP binding cassette subfamily C member 1) to reduce its expressions. MTT and flow cytometry indicated that elevation of miR-9-5p or down-regulation of ABCC1 could inhibit proliferation-induced apoptosis of drug-resistant cells, and the decrease of miR-9-5p could reverse the reduction of ABCC1 on proliferation-induced apoptosis of drug-resistant cells. In vivo experiments showed that miR-9-5p could promote the anti-tumor role of TMZ. To sum up, the increase of miR-9-5p directly targets ABCC1 and may make glioma cells sensitive to TMZ.

13.
Waste Manag ; 126: 331-339, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33798821

ABSTRACT

The coexistence of plastics and microalgae in the ocean has brought great challenges to the environment. Therefore, co-pyrolysis of microalgae Dunaliella salina (DS) and typical plastics (polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC)) were investigated using thermogravimetric analyzer with Fourier transform infrared spectrometer. The results showed that the coating effect of the molten plastics promoted the pyrolysis of DS. The solid residue amounts of DS-PP, DS-PS, and DS-PET blends were reduced by 1.55 wt%, 1.39 wt%, 1.69 wt%, respectively, as a result of the hydrogenation reaction between the unsaturated products generated by plastics and biochar. While for DS-PVC, attributed to the physical and chemical effects during the co-pyrolysis process, the solid residue was increased by 1.36 wt%. For the other three blends, the solid residues were reduced due to the hydrogenation reaction between the unsaturated products generated by plastics and biochar. FTIR analysis of gaseous products indicated the total CO2 production increased significantly for DS-PET. Besides, the alkyls generated by DS reacted with HCl during DS-PVC co-pyrolysis, the resulting products were then fixed in biochar. Kinetic results suggested that due to the co-pyrolysis with DS, the activation energies of PP, PS, and PET were reduced by 1/2, 1/3, and 3/4, respectively, and this value for PVC in its second stage was reduced by 1/4. Our results indicated the advantage to co-pyrolyze the microalgae and marine plastics.


Subject(s)
Microalgae , Plastics , Kinetics , Polystyrenes , Pyrolysis
14.
ACS Omega ; 6(8): 5856-5864, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33681624

ABSTRACT

A novel metal-organic framework (MOF) has been produced via Cu(NO3)2·6H2O reaction with 3-(1H-tetrazol-5-yl)pyridine (HL) in water, and its chemical formula is {[(Cu(L)2(H2O)2](H2O)8) n } (1). Due to its high density of coordinately unsaturated sites along with large one-dimensional (1D) hexagonal channels, the activated complex 1 (1a) was explored as the solvent-free heterogeneous catalyst for cyanosilylation under mind conditions. The inhibitory function of compound 1a against the survival rate of OS-732 osteosarcoma cells was evaluated via Cell Counting Kit-8 (CCK-8) detection kit. Furthermore, the Annexin V-FITC/PI detection kit and the active oxygen (ROS) detection kit was carried out to determine the cell apoptosis levels and the ROS accumulation in OS-732 osteosarcoma cells after treatment by compound 1a.

15.
Biochimie ; 177: 40-49, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32800897

ABSTRACT

Mesenchymal stromal cell (MSC)-derived exosome therapy has emerged as an effective therapy strategy for the pathological scar formation. However, the underlying mechanisms have not been completely understood. In the current study, we investigate the therapeutic effect of TSG-6 modified MSC-derived exosomes on a mouse full-thickness wound model and provide evidence of a possible mechanism for MSC-derived exosomes to prevent from scar formation. Overexpression and knockdown of TSG-6 were conducted by lentivirus infection into hBMSCs. Exosomes were isolated from cell culture and identified by transmission electron microscopy and Western blot. C57BL/6J mice were performed of full-thickness skin wounds and treated with exosomal suspension or TSG-6-neutralizing antibody. H&E staining was subjected to observe the pathological changes of scar tissues. Immunohistochemistry, ELISA, real time-PCR and Western blot were applied to detect the expressions of relevant molecules. The results showed that subcutaneous injection of TSG-6 overexpressed MSC-derived exosomes effectively ameliorated scar pathological injury, decreased inflammatory molecular secretion and attenuated collagen deposition in a mouse skin wound model. Reversely, knockdown of TSG-6 abrogated the therapeutic effect of MSC-derived exosomes on scarring. Moreover, TSG-6-neutralizing antibody counteracted the effect of TSG-6 overexpressed MSC-derived exosomes in preventing scar formation. In conclusion, we demonstrated that exosomes derived from TSG-6 modified MSCs suppressed scar formation via reducing inflammation and inhibiting collagen deposition.


Subject(s)
Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Exosomes/chemistry , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Wound Healing , Animals , Antibodies, Neutralizing/pharmacology , Cell Adhesion Molecules/antagonists & inhibitors , Cicatrix/metabolism , Cicatrix/pathology , Cicatrix/therapy , Collagen/metabolism , Cytokines/metabolism , Disease Models, Animal , Exosomes/transplantation , Exosomes/ultrastructure , Gene Knockdown Techniques , Inflammation/metabolism , Mice, Inbred C57BL , Wound Healing/physiology
16.
Bioresour Technol ; 307: 123243, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32244077

ABSTRACT

The co-pyrolysis behavior of plastic (PP) with six biomass components (cellulose, hemicellulose, lignin, carbohydrate, lipid, protein) was studied by thermogravimetry. The overlap ratio (OR) and the difference in experimental and theoretical weight loss (ΔW) are defined. The results demonstrated that the interaction of lignin and PP was notable with the OR of 0.9661. From ΔW, it was found that the number of solid residues of hemicellulose-PP and lignin-PP decreased by 1.10% and 2.60%, respectively, which was caused by the hydrogenation reaction between the monomers generated by PP and biochar. The DTG peak shift in co-pyrolysis was further studied. By blending with the biomass, the pyrolysis peaks of PP shifted to the high-temperature region and the value was positively correlated with the fixed carbon content in the biomass components. Kinetic analysis revealed that by co-pyrolysis with biomass, the activation energy of the PP decomposition could be reduced by 39.51% -62.71%.


Subject(s)
Polypropylenes , Pyrolysis , Biomass , Kinetics , Lignin , Thermogravimetry
17.
Int J Neurosci ; 130(6): 621-630, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32013638

ABSTRACT

Purpose: Homer1a is a member of the post-synaptic density protein family that plays an important role in neuronal synaptic activity and is extensively involved in neurological disorders. The aim of this study is to investigate the role of Homer1a in modulating neuronal survival using an in vitro traumatic neuronal injury model.Materials and methods: Neurons were extracted from rats and identifited. Then, the cells were treated with Homerla overexpression or interference vectors. Western blot was performed to evaluate the expression of Homerla, apoptosis-related proteins(caspase3, caspase8, caspase9, Fasl, Bax, and p53), autophagy-related proteins (LC3ll and Beclin1), and the activiation of PI3K/AKT/mTOM pathway. In addition, the cell viability and apoptosis rate were measured. Results: After transfection with overexpression or interference vectors, the mRNA and protein expression of Homer1a increased or decreased significantly, respectively. Upregulation of Homer1a significantly alleviated apoptosis and enhanced cell viability and autophagy after traumatic neuronal injury. Homer1a overexpression also significantly decreased the expression of the pro-apoptosis proteins caspase 3, caspase 8, caspase 9, Fasl, Bax, and p53 in neurons. Furthermore, neuron autophagy was increased after traumatic neuronal injury as demonstrated by the greater accumulation of autophagosomes and higher expression of LC3II and Beclin1 induced by Homer1a overexpression. In addition, Homer1a overexpression inhibited the activation of PI3K/AKT/mTOR signaling. Conclusion: These findings indicated that Homer1a potentially protects neurons from traumatic injury by regulating apoptosis and autophagy via the caspase and PI3K/AKT/mTOR signaling pathways and may be an effective intervention target in traumatic brain injury.


Subject(s)
Brain Injuries/metabolism , Homer Scaffolding Proteins/metabolism , Neurons/metabolism , Animals , Apoptosis , Cell Proliferation , Female , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
18.
Environ Sci Pollut Res Int ; 26(28): 29032-29040, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31388956

ABSTRACT

The simultaneous wet removal performance of NO and SO2 was studied using the oxidant absorbent NaClO2/CaO2. The factors were studied including NaClO2 and CaO2 concentrations, reaction temperature, and gaseous components, such as SO2, NO, O2, and CO2. The products in liquid and solid phases were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and ion chromatography to determine the mechanism of simultaneous desulfurization and denitration by NaClO2/CaO2. The results indicated that the removal efficiency of SO2 was in the range of 98-99.9%, and the removal efficiencies of NO and NOx were 99.4% and 95.0%, respectively. The removal efficiencies of NO and NOx increased with the increase of NaClO2 and CaO2 concentration and reaction temperature. The gaseous components had a stronger effect on NOx removal efficiency, followed by NO removal efficiency, and SO2 removal efficiency. As SO2 concentration increased, the generation of sulfite species promoted the removal of NO and NOx. Competition for NO2 and SO2 absorption by absorbent inhibited the removal efficiencies of SO2 and NOx. The presence of O2 was beneficial for removing SO2, NO, and NOx, while the presence of CO2 was not. The main products in the liquid and solid phases were NO3-, NO2-, SO42-, and CaSO4. The reaction mechanism for simultaneous wet removal of SO2 and NO by NaClO2/CaO2 is proposed and discussed.


Subject(s)
Denitrification , Models, Chemical , Sulfur Dioxide/chemistry , Oxidants , Temperature , X-Ray Diffraction
19.
Bioresour Technol ; 292: 121970, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31421590

ABSTRACT

Co-pyrolysis of tobacco stalk (TS) with different types of polymer wastes such as scrap tire (ST), polypropylene (PP) and polyvinyl chloride (PVC) was investigated. Thermogravimetric analyzer coupled with Fourier transform infrared spectrometer was carried out to examine the thermochemical properties, kinetics, and gas generation. The results of the co-pyrolysis showed a synergistic effect compared to the pyrolysis of the individual components. When using TS/ST co-pyrolysis, the reduction in char residue was about 6% (dry wt. basis) and the increase in organic gases exceeded 20%. It indicates that the addition of ST can increase both carbon conversion efficiency and volatiles yield. HCl from PVC underwent a complex physicochemical reaction with TS, increasing coke yield by 11-12% and inhibiting the gas release. In the main pyrolysis temperature range of ST, the activation energy is reduced by 40-80% by blending with TS; for PP this value is reduced by about 22%.


Subject(s)
Nicotiana , Polymers , Gases , Kinetics , Pyrolysis , Thermogravimetry
20.
Nanomaterials (Basel) ; 9(7)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323858

ABSTRACT

Molecular imprinting technology (MIT), also known as molecular template technology, is a new technology involving material chemistry, polymer chemistry, biochemistry, and other multi-disciplinary approaches. This technology is used to realize the unique recognition ability of three-dimensional crosslinked polymers, called the molecularly imprinted polymers (MIPs). MIPs demonstrate a wide range of applicability, good plasticity, stability, and high selectivity, and their internal recognition sites can be selectively combined with template molecules to achieve selective recognition. A molecularly imprinted fluorescence sensor (MIFs) incorporates fluorescent materials (fluorescein or fluorescent nanoparticles) into a molecularly imprinted polymer synthesis system and transforms the binding sites between target molecules and molecularly imprinted materials into readable fluorescence signals. This sensor demonstrates the advantages of high sensitivity and selectivity of fluorescence detection. Molecularly imprinted materials demonstrate considerable research significance and broad application prospects. They are a research hotspot in the field of food and environment safety sensing analysis. In this study, the progress in the construction and application of MIFs was reviewed with emphasis on the preparation principle, detection methods, and molecular recognition mechanism. The applications of MIFs in food and environment safety detection in recent years were summarized, and the research trends and development prospects of MIFs were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...