Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
Cell Rep Med ; : 101592, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38843841

ABSTRACT

Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.

2.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38697643

ABSTRACT

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Subject(s)
Homeostasis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Homeostasis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Mice , Bortezomib/pharmacology , Bortezomib/chemistry , Liposomes/chemistry , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Hydroxides/chemistry , Hydroxides/pharmacology , Nanostructures/chemistry , Nanoparticles/chemistry
3.
J Intensive Care Med ; : 8850666241253162, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748540

ABSTRACT

OBJECTIVES: The study investigated whether percutaneous partial pressure of oxygen (PtcO2), percutaneous partial pressure of carbon dioxide (PtcCO2), and the derived tissue perfusion index (TPI) can predict the severity and short-term outcomes of severe and critical COVID-19. DESIGN: Prospective observational study conducted from January 1, 2023 to February 10, 2023. SETTING: A teaching hospital specializing in tertiary care in Nanjing City, Jiangsu Province, China. PARTICIPANTS: Adults (≥18 years) with severe and critical COVID-19. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The general information and vital signs of the patients were collected. The PtcO2 and PtcCO2 were monitored in the left dorsal volar. The ratio of TPI was defined as the ratio of PtcO2/fraction of inspired oxygen (FiO2) to PtcCO2. Mortality at 28 was recorded. The ability of the TPI to assess disease severity and predict prognosis was determined. ENDPOINT: Severity of the disease on the enrollment and mortality at 28. RESULTS: A total of 71 patients with severe and critical COVID-19, including 40 severe and 31 critical cases, according to the COVID-19 treatment guidelines published by WHO, were recruited. Their median age was 70 years, with 56 (79%) males. The median SpO2/FiO2, PtcO2, PtcCO2, PtcO2/ FiO2, and TPI values were 237, 61, 42, 143, and 3.6 mm Hg, respectively. Compared with those for severe COVID-19, the TPI, PtcO2/ FiO2, SpO2/FiO2, and PtcO2 were significantly lower in critical COVID-19, while the PtcCO2 was significantly higher. After 28 days, 26 (37%) patients had died. TPI values < 3.5 were correlated with more severe disease status (AUC 0.914; 95% CI: 0.847-0.981, P < 0.001), and TPI < 3.3 was associated with poor outcomes (AUC 0.937; 95% CI 0.880-0.994, P < 0.001). CONCLUSIONS: The tissue perfusion index (TPI), PtcCO2, and PtcO2/ FiO2 can predict the severity and outcome of severe and critical COVID-19.

4.
Environ Manage ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750288

ABSTRACT

Climate change and human activities have significantly influenced soil loss and the soil conservation service, posed threats to regional ecological sustainability. However, the relationships and underlying driving forces between potential soil loss, actual soil loss, and soil conservation service have not been well understood. Utilizing the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, we evaluated the soil conservation service on the Tibetan plateau from 1990 to 2020. We analyzed the spatial and temporal trends and examined the driving factors using linear regression, Pearson correlation, and random forest regression. The soil conservation service exhibited a complex pattern of increase followed by a decrease, with a turning point around 2010. Soil conservation service and soil loss demonstrated non-trade-off changes. The potential soil loss dominated the spatiotemporal patterns of soil conservation service on the Tibetan Plateau. Climatic factors significantly influenced the spatiotemporal patterns of soil conservation service, with annual precipitation emerging as the dominant driving factor, contributing approximately 20%. However, the impacts of human activities became more pronounced since 2010, and the contribution of vegetation to changes in soil conservation service was increased. The impact of the Normalized Difference Vegetation Index (NDVI) on soil conservation service for the grades I, II, and III increased by 13.19%, 3.08%, and 3.41%, respectively. Conversely, in northern Tibet before 2010 and eastern Three-River-Source after 2010, soil conservation service exhibited an increasing trend driven by both climate factors and human activities. Which indicates that the implementation of ecological restoration measures facilitated vegetation improvement and subsequently reduced actual soil loss. This study provides a scientific basis for resource management, land development strategies, and the formulation of ecological restoration measures on the Tibetan Plateau.

5.
J Environ Sci (China) ; 144: 87-99, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802241

ABSTRACT

There is a lack of understanding about the bacterial, fungal and archaeal communities' composition of solid-phase denitrification (SPD) systems. We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit (OTU) and amplicon sequence variant (ASV). The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone (CPSP, 0.86±0.04 mg NO3--N/(g·day)) and corncob (0.85±0.06 mg NO3--N/(g·day)) had better denitrification efficiency than polycaprolactone (PCL, 0.29±0.11 mg NO3--N/(g·day)) and polyvinyl alcohol-sodium alginate (PVA-SA, 0.24±0.07 mg NO3--N/(g·day)). The bacterial, fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL (OTU: 83.72%, ASV: 82.49%) and Rozellomycota in PVA-SA (OTU: 71.99%, ASV: 81.30%). ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum, unclassified_ f_ Xanthobacteraceae genus, etc., indicating ASV may be more conducive to understand SPD microbial communities. The co-occurring network showed some correlation between the bacteria fungi and archaea species, indicating different species may collaborate in SPD systems. Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems. These results may be beneficial for understanding microbial communities in SPD systems.


Subject(s)
Bacteria , Carbon , Denitrification , Microbiota , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Carbon/metabolism , Archaea/genetics , Archaea/metabolism , Fungi/metabolism
6.
Front Microbiol ; 15: 1396774, 2024.
Article in English | MEDLINE | ID: mdl-38808279

ABSTRACT

Pseudomonas aeruginosa is one of the most common pathogens causing hemorrhagic pneumonia in Chinese forest musk deer. Multidrug-resistant P. aeruginosa is frequently isolated from the lungs of affected musk deer in Shaanxi Province, China. With the increasing bacterial drug resistance, commonly used antibiotics have shown limited efficacy against drug-resistant P. aeruginosa. Therefore, phages have garnered attention as a promising alternative to antibiotics among researchers. In this study, phages vB_PaeP_YL1 and vB_PaeP_YL2 (respectively referred to as YL1 and YL2) were isolated from mixed sewage samples from a farm. YL1 and YL2 exhibit an icosahedral head and a non-contractile short tail, belonging to the Podoviridae family. Identification results demonstrate good tolerance to low temperatures and pH levels, with minimal variation in potency within 30 min of UV irradiation. The MOI for both YL1 and YL2 was 0.1, and their one-step growth curve latent periods were 10 min and 20 min, respectively. Moreover, both single phage and phage cocktail effectively inhibited the growth of the host bacteria in vitro, with the phage cocktail showing superior inhibitory effects compared to the single phage. YL1 and YL2 possess double-stranded DNA genomes, with YL1 having a genome size of 72,187 bp and a total G + C content of 55.02%, while YL2 has a genome size of 72,060 bp and a total G + C content of 54.98%. YL1 and YL2 are predicted to have 93 and 92 open reading frames (ORFs), respectively, and no ORFs related to drug resistance or lysogeny were found in both phages. Genome annotation and phylogenetic analysis revealed that YL1 is closely related to vB_PaeP_FBPa1 (ON857943), while YL2 is closely related to vB_PaeP_FBPa1 (ON857943) and Phage26 (NC041907). In a mouse model of hemorrhagic pneumonia, phage cocktail treatment showed better control of the disease and significantly reduced lung bacterial load compared to single phage treatment. Therefore, YL1 and YL2 have the potential for the prevention and treatment of multidrug-resistant P. aeruginosa infections.

7.
Cladistics ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712908

ABSTRACT

Insects have evolved complex sensory systems that are important for feeding, defence and reproduction. Parasitoid wasps often spend much time and effort in searching for concealed hosts with the help of specialized sensilla. However, the early evolution of such behaviour and sensilla is poorly known. We describe two fossil female wasps, †Tichostephanus kachinensis sp. nov. and †Tichostephanus longus sp. nov., from mid-Cretaceous Kachin amber. Phylogenetic analyses based on morphological data retrieved †Tichostephanus as deeply nested within Evanioidea and closely related to extant Gasteruptiidae and Evaniidae. Both of these Cretaceous wasps possess features, e.g. coronal tubercles and flexible ovipositor sheaths, that indicate that they might have laid eggs in wood where their larvae possibly parasitized insect larvae. They have a peculiar and unique 'bottle brush' of sensilla close to the apex of their ovipositor sheaths, which has not been observed in any extant parasitoid wasps. These sensilla comprise many regularly arranged plate-shaped setae, attached in relatively large sockets and with rows of longitudinal ridges. Such specialized sensilla perhaps served to enhance the ability to detect hosts inside wood.

8.
Article in English | MEDLINE | ID: mdl-38648147

ABSTRACT

Effectively assessing psychological resilience for medical students is vital for identifying at-risk individuals and developing tailored interventions. At present, few studies have combined physiological indexes of the human body and machine learning for psychological resilience assessment. This study presents a novel approach that employs pupil diameter features and machine learning to predict psychological resilience risk objectively. Firstly, we designed a stimulus paradigm (via auditory and visual stimuli) and collected pupil diameter data from participants using eye-tracking technology. Secondly, the pupil data was preprocessed, including linear interpolation, blink detection, and subtractive baseline correction. Thirdly, statistical metrics were extracted and optimal feature subsets were obtained by Recursive Feature Elimination with Cross-Validation (RFECV). Subsequently, the classification models, including Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), were trained. The experimental results show that the SVM model has the best performance, and its balance accuracy, recall, and AUC reach 0.906, 0.89, and 0.932, respectively. Finally, we leveraged the Shapley additive explanation (SHAP) model for interpretability analysis. It revealed auditory stimuli have a more significant effect than visual stimuli in psychological resilience assessment. These findings suggested that pupil diameter could be a vital metric for assessing psychological resilience.

9.
J Exp Clin Cancer Res ; 43(1): 99, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561775

ABSTRACT

Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Transcription Factors/metabolism , Epigenesis, Genetic , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/genetics
10.
J Colloid Interface Sci ; 668: 399-411, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38685165

ABSTRACT

Researchers are interested in single-atom catalysts with atomically scattered metals relishing the enhanced electrocatalytic activity for nitrogen reduction and 100 % metal atom utilization. In this paper, we investigated 18 transition metals (TM) spanning 3d to 5d series as efficient nitrogen reduction reaction (NRR) catalysts on defective 2D SiPV layered structures through first-principles calculation. A systematic screening identified Mo@SiPV, Nb@SiPV, Ta@SiPV and W@SiPV as superior, demonstrating enhanced ammonia synthesis with significantly lower limiting potentials (-0.25, -0.45, -0.49 and -0.15 V, respectively), compared to the benchmark -0.87 eV for the defective SiP. In addition, the descriptor ΔG*N was introduced to establish the relationship between the different NRR intermediates, and the volcano plot of the limiting potentials were determined for their potential-determining steps (PDS). Remarkably, the limiting voltage of the NRR possesses a good linear relationship with the active center TM atom Ɛd, which is a reliable descriptor for predicting the limiting voltage. Furthermore, we verified the stability (using Ab Initio Molecular Dynamics - AIMD) and high selectivity (UL(NRR)-UL(HER) > -0.5 V) of these four catalysts in vacuum and solvent environments. This study systematically demonstrates the strong catalytic potential of 2D TM@SiPV(TM = Mo, Nb, Ta, W) single-atom catalysts for nitrogen reduction electrocatalysis.

11.
Compr Rev Food Sci Food Saf ; 23(3): e13353, 2024 05.
Article in English | MEDLINE | ID: mdl-38660747

ABSTRACT

Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.


Subject(s)
Bread , Dextrans , Glutens , Starch , Triticum , Bread/analysis , Bread/standards , Starch/chemistry , Glutens/chemistry , Dextrans/chemistry , Triticum/chemistry , Fermentation , Food Handling/methods , Food Quality
12.
Biosci Trends ; 18(2): 187-194, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38599880

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and symmetric in-flammation. Our previous research revealed an imbalance in the gut flora of RA patients and showed that certain gut microbiota can accelerate RA progression by enhancing vitamin C degradation. However, it is unclear whether vitamin C supplementation could improve the gut microbiota to prevent the development of arthritis by interfering with the gut-joint axis. In this work, we aimed to evaluate the effects of vitamin C in regulating the gut microbiota and to elucidate its potential role in the onset and progression of RA in a mouse model, thus providing a basis for the development of new intervention strategies and treatments for RA. In this study, collagen-induced arthritis (CIA) mouse models, biochemical, histological and 16S rRNA microbiological methods were used to investigate the role and possible mechanism of vitamin C in rheumatoid arthritis. The results showed that treatment of CIA mice with vitamin C effectively rescued the gut mi-crobiota imbalance and suppressed the inflammatory response associated with RA, and effectively alleviated arthritis symptoms in mice in which levels of the pro-inflammatory cytokines IL-6 and TNF-α were specifi-cally reduced. In conclusion, our results demonstrate the potential of vitamin C as a potential therapeutic choice for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Ascorbic Acid , Gastrointestinal Microbiome , Animals , Ascorbic Acid/therapeutic use , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Gastrointestinal Microbiome/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/microbiology , Mice , Arthritis, Experimental/drug therapy , Arthritis, Experimental/microbiology , Arthritis, Experimental/immunology , Male , Mice, Inbred DBA , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Disease Models, Animal , RNA, Ribosomal, 16S/genetics
13.
Materials (Basel) ; 17(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38473655

ABSTRACT

Aeolian sand and loess are both natural materials with poor engineering-related properties, and no research has been devoted to exploring aeolian sand-loess composite materials. In this study, we used aeolian sand and loess as the main raw materials to prepare unfired bricks by using the pressing method, along with cement, fly ash, and polypropylene fiber. The effects of different preparation conditions on the physical properties of the unfired bricks were investigated based on compressive strength, water absorption, and softening tests and a freeze-thaw cycle test combined with X-ray diffraction and scanning electron microscope analysis to determine the optimal mixing ratio for unfired bricks, and finally, the effects of fibers on the durability of the unfired bricks were investigated. The results reveal that the optimal mixing ratio of the masses of aeolian sand-loess -cement -fly ash-polypropylene fiber-alkali activator-water was 56.10:28.05:9.17:2.40:0.4:0.003:4.24 under a forming pressure of 20 MPa. The composite unfired bricks prepared had a compressive strength of 14.5 MPa at 14 d, with a rate of water absorption of 8.8%, coefficient of softening of 0.92, and rates of the losses of frozen strength and mass of 15.93% and 1.06%, respectively, where these satisfied the requirements of environmentally protective bricks with strength grades of MU10-MU15. During the curing process, silicate and sodium silicate gels tightly connected the particles of aeolian sand and the loess skeleton, and the spatial network formed by the addition of the fibers inhibited the deformation of soil and improved the strength of the unfired bricks.

14.
Mol Oncol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501452

ABSTRACT

Androgen-regulated DNA damage response (DDR) is one of the essential mechanisms in prostate cancer (PCa), a hormone-sensitive disease. The heterogeneous nuclear ribonucleoprotein K (hnRNPK)-homology splicing regulatory protein known as far upstream element-binding protein 2 (KHSRP) is an RNA-binding protein that can attach to AU-rich elements in the 3' untranslated region (3'-UTR) of messenger RNAs (mRNAs) to mediate mRNA decay and emerges as a critical regulator in the DDR to preserve genome integrity. Nevertheless, how KHSRP responds to androgen-regulated DDR in PCa development remains unclear. This study found that androgen can significantly induce acetylation of KHSRP, which intrinsically drives tumor growth in xenografted mice. Moreover, enhanced KHSRP acetylation upon androgen stimuli impedes KHSRP-regulated DDR gene expression, as seen by analyzing RNA sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) datasets. Additionally, NAD-dependent protein deacetylase sirtuin-7 (SIRT7) is a promising deacetylase of KHSRP, and androgen stimuli impairs its interaction with KHSRP to sustain the increased KHSRP acetylation level in PCa. We first report the acetylation of KHSRP induced by androgen, which interrupts the KHSRP-regulated mRNA decay of the DDR-related genes to promote the tumorigenesis of PCa. This study provides insight into KHSRP biology and potential therapeutic strategies for PCa treatment, particularly that of castration-resistant PCa.

15.
Toxics ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535948

ABSTRACT

BACKGROUND: Inhalation exposure to carcinogenic metals such as cadmium (Cd) is a significant global health concern linked to various cancers. However, the precise carcinogenic mechanism underlying inhalation exposure remains elusive. METHODS: In this study, CT26 mouse colon cancer (CC) cells were implanted into BALB/c mice to establish CC mouse models. Some of the CC mice were implanted with intestinal stents. The mice were exposed to atomized oxygen and nitrogen (O2/N2) gas containing Cd. RESULTS: Atmospheric Cd intensified inflammation in CC cells and heightened Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase 1 (NOX1) activity, which is an indirect measurement of increased reactive oxygen species (ROS) production. This escalated ROS production triggered abnormal Wnt protein secretion, activated the Wnt/ß-catenin signaling pathway, and stimulated CC cell proliferation. No discernible body weight effect was seen in the CC mice, possibly due to the later-stage tumor weight gain, which masked the changes in body weight. Cd facilitated colon tumor restructuring and cell migration at the later stage. The implantation of intestinal stents inhibited the expression of Superoxide Dismutase 1 (SOD1) in the colon tumors of the CC mice, with no evident effects on the expression levels of NOX1, SOD2, and Catalase (CAT) enzymes. Elevated ROS levels, indirectly reflected by enzyme activity, did not substantially impact the Wnt/ß-catenin signaling pathway and even contributed to slowing its imbalance. Stent implantation eased the inflammation occurring in colon tumors by reducing CC cell proliferation but it induced discomfort in the mice, leading to a reduction in food intake and weight. CONCLUSIONS: Cd partially fosters CC tumorigenesis via the ROS-mediated Wnt/ß-catenin signaling pathway. The effect of Cd on the invasive effect of intestinal stents in the cancerous colon is not significant.

16.
J Biomed Mater Res B Appl Biomater ; 112(3): e35400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456343

ABSTRACT

Lithium disilicate (Li2 Si2 O5 ) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li2 Si2 O5 whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li2 Si2 O5 glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 µg/cm2 , complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li2 Si2 O5 glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.


Subject(s)
Ceramics , Containment of Biohazards , Animals , Mice , Rabbits , Materials Testing , Solubility , Surface Properties , Ceramics/chemistry , Dental Porcelain , Lithium
17.
Curr Biol ; 34(4): 916-922.e1, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38320551

ABSTRACT

Phthirapteran lice (true lice or parasitic lice) are a major group of ectoparasitic insects living on their bird or mammal hosts during their entire life cycle.1 Due to their highly specialized lifestyles, they are extremely poorly represented in fossil records.2 Molecular clock estimations have speculated extensively about the origin time of parasitic lice,3,4 yet none have been confirmed unequivocally. Herein, we report a new family of stem chewing lice, based on two adult insects associated with several semiplume feathers preserved within a piece of Kachin amber from the mid-Cretaceous. They display some defining characteristics of the Amblycera, an early-diverging lineage of the crown lice group. These features include a wingless body, chewing mouthparts, narrow and small thorax, and short tarsus with elongated euplantulae. Our phylogenetic analysis places the new taxa in the Amblycera, and the discovery thus pushes back the lice fossil records by at least 55 million years. Furthermore, the new specimens show primitive characters such as compressed and club-shaped terminal segments of antennae, maxillary and labial palps, and unmodified femora of hind legs, providing key information for the evolutionary relationship between free-living booklice and parasitic lice. This suggests that some ectoparasitic characters defining the crown lice group might have evolved among amblyceran and non-amblyceran lice in parallel. These newly described fossil specimens imply at least a Cretaceous age of Phthiraptera.


Subject(s)
Ischnocera , Phthiraptera , Animals , Feathers , Phylogeny , Amber , Birds , Insecta , Mammals
18.
Chaos ; 34(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38416671

ABSTRACT

We study the small mass limit in mean field theory for an interacting particle system with non-Gaussian Lévy noise. When the Lévy noise has a finite second moment, we obtain the limit equation with convergence rate ε+1/εN, by taking first the mean field limit N→∞ and then the small mass limit ε→0. If the order of the two limits is exchanged, the limit equation remains the same but has a different convergence rate ε+1/N. However, when the Lévy noise is α-stable, which has an infinite second moment, we can only obtain the limit equation by taking first the small mass limit and then the mean field limit, with the convergence rate 1/Nα-1+1/Np2+εp/α where p∈(1,α). This provides an effectively limit model for an interacting particle system under a non-Gaussian Lévy fluctuation, with rigorous error estimates.

19.
Plant Sci ; 341: 112014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309473

ABSTRACT

Brassinosteroids (BRs) function importantly in plant growth and development, but the roles in regulating fruit development and anthocyanin pigmentation remain unclear. Eggplant (Solanum melongena L.) is an important Solanaceae vegetable crop rich in anthocyanins. The fruit size and coloration are important agronomic traits for eggplant breeding. In this study, transgenic eggplant exhibiting endogenous BRs deficiency was created by overexpressing a heterologous BRs-inactivating enzyme gene GhPAG1 driven by CaMV 35 S promoter. 35 S::GhPAG1 eggplant exhibited severe dwarfism, reduced fruit size, and less anthocyanin accumulation. Microscopic observation showed that the cell size of 35 S::GhPAG1 eggplant was significantly reduced compared to WT. Furthermore, the levels of IAA, ME-IAA, and active JAs (JA, JA-ILE, and H2JA) all decreased in 35 S::GhPAG1 eggplant fruit. RNA-Seq analyses showed a decrease in the expression of genes involved in cell elongation, auxin signaling, and JA signaling. Besides, overexpression of GhPAG1 significantly downregulated anthocyanin biosynthetic genes and associated transcription regulators. Altogether, these results strongly suggest that endogenous brassinosteroid deficiency arising from GhPAG1 overexpression impacts eggplant fruit development and anthocyanin coloration mainly by altering hormone homeostasis.


Subject(s)
Anthocyanins , Solanum melongena , Anthocyanins/metabolism , Solanum melongena/genetics , Solanum melongena/metabolism , Fruit/metabolism , Plant Breeding , Hormones/metabolism , Homeostasis , Gene Expression Regulation, Plant
20.
Cancer Lett ; 588: 216734, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38401886

ABSTRACT

Telomerase activity is upregulated in head and neck squamous cell carcinoma (HNSCC), yet its regulatory mechanisms remain unclear. Here, we identified a cancer-specific lncRNA (LINC02454) associated with poor prognosis by using LncRNA chip of our HNSCC cohorts and external datasets. Through employing negative-stain transmission electron microscopy (NS-TEM), we discovered an interaction between LINC02454 and CCT complex which would augment telomerase activity for maintaining telomere homeostasis. Supporting this, in the telomerase repeat amplification protocol (TRAP) assay and quantitative fluorescence in situ hybridization (Q-FISH) analysis, LINC02454 depletion significantly reduced telomerase activity and shortened telomere length. Consistently, pathways related to telomerase, mitosis, and apoptosis were significantly impacted upon LINC02454 knockdown in RNAseq analysis. Functionally, LINC02454-deficient cells exhibited a more significant senescence phenotype in ß-galactosidase staining, cell cycle, and apoptosis assays. We further confirmed the role of LINC02454 in HNSCC proliferation through a combination of in vitro and in vivo experiments. The therapeutic potential of targeting LINC02454 was verified by adenovirus-shRNA approach in HNSCC patient-derived xenograft (PDX) models. In summary, our findings provided valuable insights into the molecular mechanisms of HNSCC tumorigenesis and potential targets for future treatment modalities.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , RNA, Long Noncoding , Telomerase , Humans , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , In Situ Hybridization, Fluorescence , RNA, Long Noncoding/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere Shortening
SELECTION OF CITATIONS
SEARCH DETAIL
...