Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 964
Filter
1.
Neural Regen Res ; 20(2): 533-547, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819065

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aß1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-ß in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of ß-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.

2.
Life Sci ; 349: 122693, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710277

ABSTRACT

Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.

3.
Front Psychol ; 15: 1358229, 2024.
Article in English | MEDLINE | ID: mdl-38800682

ABSTRACT

Background: Cataracts, characterized by a decrease in vision due to the clouding of the lens, can progress to blindness in advanced stages. The rising incidence of cataract cases has led to a significant number of patients experiencing negative emotions associated with vision loss, thereby diminishing their quality of life. In clinical practice, it is imperative for healthcare professionals to consider the psychological well-being of cataract patients. Currently, there is a scarcity of research focusing on psychological evaluations, such as assessing feelings of meaninglessness among individuals with cataracts. Objective: This study aims to investigate the factors influencing the anxiety of existential meaninglessness and to explore the relationships among existential anxiety, Herth hope index levels and fear of progression in the elderly cataract-affected population. Additionally, it evaluates the effectiveness of Orem's nursing care strategies. Methods: Utilizing a sociodemographic questionnaire, the Existential Meaninglessness Anxiety Scale (EM-A), Herth Hope Index Level Scale, and the Fear of Progression Questionnaire-Short Form (FoP-Q-SF), this research employed convenience sampling for a cross-sectional and intervention study. The retrospective study sample comprised 1,029 individuals, while the intervention study included 317. The intervention design assessed psychological changes in existential meaninglessness following Orem's preoperative nursing interventions. Multiple linear regression analysis was employed to ascertain the determinants of EM-A within the population of elderly patients with senile cataracts. Pearson correlation analysis elucidated the relationship between EM-A, levels of hope, and the FoP-Q-SF among this demographic. Subsequent investigations, utilizing a t-test, evaluated the effects by comparing the data before and after the implementation of the interventions. Results: The correlation between EM-A, hope levels, and FoP-Q-SF was statistically significant (p < 0.05). Factors such as age, education level, alcohol consumption habits, hope levels, and FoP-Q-SF scores significantly affected EM-A scores (p < 0.05). Orem's nursing framework significantly reduced existential anxiety (p < 0.05). Conclusion: Among elderly patients with cataracts, existential anxiety was generally moderate. Hope levels and fear of progression were closely associated with the EM-A. The novel Orem preoperative care model effectively addresses clinical issues. In clinical practice, it is crucial to address psychological problems and enhance patients' quality of life.

4.
Environ Toxicol Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804646

ABSTRACT

Macrochelys temminckii (alligator snapping turtle) is an aquatic turtle endemic to the southeastern United States that was proposed for listing under the Endangered Species Act in 2021. In the present study we analyzed total mercury (THg) concentrations in skeletal muscle, tail clips, and nail tissue of 93 M. temminckii sampled from 14 waterbodies in eastern Texas (USA). Our objectives were to assess (1) the degree of correlation between internal tissue (skeletal muscle and tail clip samples) and keratin (nail samples), (2) the influence of ecological factors (turtle size and waterbody/sampling site) on THg concentrations, and (3) whether THg concentrations were high enough to pose a risk to human consumers. The mean (±SE) THg concentrations of muscle and nail were 1.16 ± 0.08 µg/g dry weight and 4.21 ± 0.24 µg/g dry weight, respectively, and THg concentrations were highly dependent on the sampling site. The THg concentrations of nails were correlated with muscle concentrations (R2 = 0.56, p < 0.001). The effect of body size on THg concentrations varied by sampling site, indicating that size is not a good predictor of Hg concentration across sites. Finally, THg concentrations in M. temminckii of eastern Texas were high enough to pose a potential risk to human health based on US Environmental Protection Agency dietary guidelines. Environ Toxicol Chem 2024;00:1-11. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

5.
J Anim Sci ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727196

ABSTRACT

Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), a significant member of the conserved RNA-binding protein family, plays various roles in numerous physiological and pathological processes. However, the specific function of IGF2BP2 in regulating endometrial function in sheep remains largely unknown. In this study, we observed a significant upregulation in IGF2BP2 mRNA abundance in the endometrium during the luteal phase (LP) compared to the follicular phase (FP) in Hu sheep. The knockdown of IGF2BP2 resulted in accelerated cell proliferation and migration of Hu sheep endometrial stromal cells (ESCs). Moreover, RNA sequencing analysis revealed that genes with significantly altered expression in IGF2BP2 knockdown cells were predominantly enriched in endometrial receptivity-related signaling pathways, such as cytokine-cytokine receptor interaction, NOD-like receptor, PI3K-AKT, and JAK-STAT signaling pathway. Additionally, the knockdown of IGF2BP2 significantly increased the expression of matrix metalloprotein 9 (MMP9), vascular endothelial growth factor (VEGF), and prolactin (PRL) in ESCs. The knockdown of IGF2BP2 was also observed to stimulate the PI3K/AKT/mTOR pathway by upregulating integrin ß4 (ITGB4) expression. Notably, the downregulation of ITGB4 attenuates IGF2BP2 knockdown-induced facilitation of proliferation and migration of Hu sheep ESCs by inhibiting the PI3K/AKT/mTOR pathway. Collectively, these findings highlight the important role of IGF2BP2 in regulating endometrial function, particularly through the modulation of ESC proliferation and migration via the PI3K/AKT/mTOR pathway.

6.
RSC Adv ; 14(20): 14303-14310, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38690105

ABSTRACT

The aim of this study was to evaluate the effect of five varieties on the quality of herbaceous peony tea by physicochemical analysis, sensory evaluation, antimicrobial capacity analysis and a combination of gas chromatography with quadruple time of flight mass spectrometry (GC-QTOF). Antibacterial and antioxidant analyses revealed that the ABTS free radical scavenging rate of HPT was high, ranging from 82.20% to 87.40% overall. 'Madame Claude Tain' had the strongest inhibitory ability against Staphylococcus aureus with an inhibitory effect of 12.65 mm. The sensory evaluation showed that 'Angel cheeks' had the highest overall sensory score. GC-QTOF combined with orthogonal projections to latent structures discriminant analysis showed that 22 volatile components were the key aroma components of herbaceous peony tea. Different varieties of herbaceous peony tea had a unique characteristic aroma. 'Angel cheeks' imparted lily-like and chestnut fragrances, which were attributed to linalool and 3,5-octadien-2-one. 'Sea Shell', 'Mother's Choice' and 'Angel Cheek' had a medicinal aroma, which may be due to the presence of o-cymene. Overall, 'Angel cheeks' was the most suitable for developing high-quality herbaceous peony tea in five varieties. This study provided a theoretical basis and technical guidance for the development of herbaceous peony.

7.
Article in English | MEDLINE | ID: mdl-38771132

ABSTRACT

The alveolar Type II epithelial (AEC2) cells act as stem cells in the lung for alveolar epithelial maintenance and repair. Chemokine CXCL10 is expressed in injured tissues, modulating multiple cellular functions. AEC2s, previously reported to release chemokines to recruit leukocytes, were found in our study to secrete CXCL10 after bleomycin injury. We found that Sftpc-Cxcl10 transgenic mice were protected from bleomycin injury. The transgenic mice showed an increase in the AEC2 population in the lung by flow cytometry analysis. Both endogenous and exogenous CXCL10 promoted the colony formation efficiency of AEC2s in a 3D organoid growth assay. We identified that the regenerative effect of CXCL10 was CXCR3 independent using Cxcr3-deficient mice, but it was related to the TrkA pathway. Binding experiments showed that CXCL10 interacted with TrkA directly and reversibly. This study demonstrates a previously unidentified AEC2 autocrine signaling of CXCL10 to promote their regeneration and proliferation, probably involving a CXCR3-independent TrkA pathway.

8.
J Asthma ; : 1-13, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767583

ABSTRACT

OBJECTIVE: To investigate the role of 14-3-3ß in acute asthma exacerbations in children and analyze the risk factors for asthma exacerbations. METHODS: This study recruited 101 children with acute asthma exacerbations, 101 children with stable asthma, and 65 healthy children. Serum 14-3-3ß was compared among the three groups. Factors such as asthma family history, skin prick test, serum-specific IgE test, coinfections, and clinical indicators (FeNO, FEV1, white blood cells, eosinophils, and serum IgE level) were compared between the asthma groups. Risk factors associated with acute asthma exacerbations were identified using multivariate logistic regression models. ROC curve was drawn to determine the diagnostic sensitivity and specificity of 14-3-3ß. RESULTS: Serum 14-3-3ß was significantly greater in the acute asthma group than in the stable asthma and control groups. Serum 14-3-3ß was higher in severe acute asthma group than in mild-moderate asthma group. There were no significant differences in serum 14-3-3ß levels between stable asthma and control groups (P > 0.05). Multivariate logistic regression analysis revealed that serum 14-3-3ß level, FeNO, coinfection, and FEV1 z-score significantly increased the odds of acute asthma exacerbations in children. The optimal 14-3-3ß cutoff value (39.79 ng/mL), had a sensitivity of 69.3% and specificity of 94.1% for predicting acute asthma exacerbations. CONCLUSIONS: 14-3-3ß is elevated in children with acute exacerbations of asthma, and increases with exacerbation severity. 14-3-3ß, FeNO, FEV1, and coinfection could be independent risk factors for predicting asthma exacerbations. The optimal 14-3-3ß cutoff value for predicting asthma exacerbations was 39.79 ng/mL.

9.
Antioxidants (Basel) ; 13(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790718

ABSTRACT

Radiation pneumonitis (RP) is a prevalent and fatal complication of thoracic radiotherapy due to the lack of effective treatment options. RP primarily arises from mitochondrial injury in lung epithelial cells. The mitochondrial-derived peptide MOTS-c has demonstrated protective effects against various diseases by mitigating mitochondrial injury. C57BL/6 mice were exposed to 20 Gy of lung irradiation (IR) and received daily intraperitoneal injections of MOTS-c for 2 weeks. MOTS-c significantly ameliorated lung tissue damage, inflammation, and oxidative stress caused by radiation. Meanwhile, MOTS-c reversed the apoptosis and mitochondrial damage of alveolar epithelial cells in RP mice. Furthermore, MOTS-c significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells and primary mouse lung epithelial cells. Mechanistically, MOTS-c increased the nuclear factor erythroid 2-related factor (Nrf2) level and promoted its nuclear translocation. Notably, Nrf2 deficiency abolished the protective function of MOTS-c in mice with RP. In conclusion, MOTS-c alleviates RP by protecting mitochondrial function through an Nrf2-dependent mechanism, indicating that MOTS-c may be a novel potential protective agent against RP.

10.
Immunol Lett ; 267: 106862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702033

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
11.
Photoacoustics ; 38: 100607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38665365

ABSTRACT

Ring-array photoacoustic tomography (PAT) system has been widely used in noninvasive biomedical imaging. However, the reconstructed image usually suffers from spatially rotational blur and streak artifacts due to the non-ideal imaging conditions. To improve the reconstructed image towards higher quality, we propose a concept of spatially rotational convolution to formulate the image blur process, then we build a regularized restoration problem model accordingly and design an alternating minimization algorithm which is called blind spatially rotational deconvolution to achieve the restored image. Besides, we also present an image preprocessing method based on the proposed algorithm to remove the streak artifacts. We take experiments on phantoms and in vivo biological tissues for evaluation, the results show that our approach can significantly enhance the resolution of the image obtained from ring-array PAT system and remove the streak artifacts effectively.

12.
Curr Mol Med ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659267

ABSTRACT

BACKGROUND: This study investigates the inhibitory mechanism of anlotinib on human Mantle Cell Lymphoma (MCL) cells through in vitro and in vivo experiments. METHODS: In vitro cellular experiments validate the effects of anlotinib on MCL cell proliferation and apoptosis. Moreover, a subcutaneous xenograft nude mice model of Mino MCL cells was established to assess the anti-tumour effect and tumour microenvironment regulation of anlotinib in vivo. RESULTS: The results indicate that MCL cell proliferation was significantly inhibited upon anlotinib exposure. The alterations in the expression of apoptosis-related proteins further confirm that anlotinib can induce apoptosis in MCL cells. Additionally, anlotinib significantly reduced the PI3K/Akt/mTOR phosphorylation level in MCL cells. The administration of a PI3K phosphorylation agonist, 740YP, could reverse the inhibitory effect of anlotinib on MCL. In the xenograft mouse model using Mino MCL cells, anlotinib treatment led to a gradual reduction in body weight and a significant increase in survival time compared to the control group. Additionally, anlotinib attenuated PD-1 expression and elevated inflammatory factors, CD4, and CD8 levels in tumour tissues. CONCLUSION: Anlotinib effectively inhibits proliferation and induces apoptosis in MCL both in vitro and in vivo. This inhibition is likely linked to suppressing phosphorylation in the PI3K/Akt/mTOR pathway.

14.
Sci Rep ; 14(1): 9239, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649695

ABSTRACT

Monitoring and preventing coal-rock dynamic disasters are vital for safe mining. To investigate the time-frequency features of induced charge signals with coal damage and failure of roadways, the generation mechanism of free charge in loaded coal is analyzed and the induced charge monitoring test is conducted. According to the stress-induced charge-time curves, the time-domain features of charge signals at each loading stage are obtained. The wavelet threshold denoising approach and generalized Morse wavelet transform method are applied to denoise the raw signals and study the frequency-domain features. Further, the quantitative relationship between the de-noised induced charge signals and the degree of coal damage is established. The results show that the event number, amplitude and fluctuation degree of available induced charge signals are all at a low level in the compaction and elastic stages of the coal, which are mainly generated by the piezoelectric effect and predominantly represent discreteness. When entering the plastic and failure stages, the available signals are primarily produced by the crack propagation and triboelectric effects, with a significant increase in the event number, amplitude, and fluctuation degree. Then the induced charge signals gradually transit from discrete to continuous. Generally, the dominant frequency of the available induced charge signals during the coal damage process is concentrated at 0 ~ 11 Hz. The available induced charge is positively correlated with the degree of coal damage, which can perform the damage degree of coal mass, providing a new approach to evaluate the stability of roadway surrounding rocks.

15.
Am J Cancer Res ; 14(3): 1316-1337, 2024.
Article in English | MEDLINE | ID: mdl-38590398

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent and deadly form of cancer globally with typically unfavorable outcomes. Increasing research suggests that lactate serves as an important carbon contributor to cellular metabolism and holds a crucial part in the progression, sustenance, and treatment response of tumors. However, the contribution of lactate-related genes (LRGs) in HCC is still unclear. In this study, we analyzed TCGA datasets and screened 21 differentially expressed LRGs related to long-term survivals in HCC patients. Pan-cancer assays revealed that 21 LRGs expression exhibited a dysregulated level in man types of tumors and associated with clinical prognosis of tumor patients. The analysis of 21 LRGs successfully classified HCC samples into two molecular subtypes, and these two subtypes showed significant differences in clinical information, gene expression, and immune characteristics. Subsequently, based on the aforementioned 21 LRGs, a novel prognostic signature (DTYMK, IRAK1, POLRMT, MPV17, UQCRH, PDSS1, SLC16A3, SPP1 and LDHD) was generated by LASSO-Cox regression analysis. Survival assays demonstrated that the signature performed well in predicting the overall survival of patients with HCC. The results of Gene Set Variation Analysis indicated that the high GSVA scores were associated with poor prognosis. Moreover, we also investigated the correlation between GSVA scores and various signaling pathways in HCC. Among the nine prognostic genes, our attention focused on POLRMT which was highly expressed in HCC specimens based on TCGA datasets and several HCC cell lines. In addition, functional assays indicated that POLRMT distinctly promoted the proliferation, migration and energy metabolism of HCC cells via regulating Wnt/ß-Catenin signaling. Overall, through the establishment of a novel prognostic signature, we have provided potential clinical value for assessing the prognosis of HCC patients. Furthermore, our study has identified the high expression of POLRMT in HCC and demonstrated its crucial role in HCC cell proliferation. These findings hold great importance in advancing our understanding of the pathophysiology of HCC, identifying new therapeutic targets, and improving patient survival rates.

16.
Carbon Balance Manag ; 19(1): 13, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622283

ABSTRACT

BACKGROUND: It is always a challenging job to compare forest resources as there is not a standardized spatial unit with location information. Google Plus Code, the newest alphanumeric geocoding system, uses 20 specifically selected letters and numbers to assign a unique global ID to every cell at different levels of a hierarchical grid system which is established based on latitude and longitude. It can be used as a standardized, unique global geospatial unit to segment, locate, quantitate, evaluate, and compare natural resources with area, boundary, and location information embedded. RESULTS: For this proof-of-concept case study, forest inventory data from 1987, 2002, and 2019 for the Zijin Mountain National Forest Park in Jiangsu Province, China was analyzed based on Google Plus Code grid/cell. This enabled the quantification of carbon storage at each cell allowing for the comparison of estimated carbon storage at same or different locations over time. CONCLUSIONS: This methodology is used to quantify the impacts of changing forest conditions and forest management activities on carbon storage with high spatial accuracy through the 32-year study period. Furthermore, this technique could be used for providing technical support and validation of carbon credit quantification and management.

17.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38626615

ABSTRACT

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Subject(s)
Biosensing Techniques , Genotyping Techniques , Helicobacter Infections , Helicobacter pylori , Helicobacter pylori/genetics , Helicobacter pylori/isolation & purification , Humans , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Genotype , Bacterial Proteins/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Microfluidics/methods , Antigens, Bacterial/genetics , Antigens, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Recombinases/metabolism
18.
Sci Total Environ ; 928: 172321, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38604373

ABSTRACT

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

19.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Article in English | MEDLINE | ID: mdl-38593488

ABSTRACT

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Subject(s)
Homeostasis , Phospholipase D , Plant Proteins , Populus , Salt Stress , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Phospholipase D/metabolism , Phospholipase D/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plants, Genetically Modified , Populus/metabolism , Populus/genetics , Populus/drug effects , Reactive Oxygen Species/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques
20.
STAR Protoc ; 5(2): 103023, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38640064

ABSTRACT

Social cooperation is fundamentally important for group animals but rarely studied in mice because of their natural aggressiveness. Here, we present a new water-reward assay to investigate mutualistic cooperative behavior in mice. We describe the construction of the apparatus and provide details of the procedures and analysis for investigators to characterize and quantify the mutualistic cooperative behavior. This protocol has been validated in mice and can be used for investigating mechanisms of cooperation. For complete details on the use and execution of this protocol, please refer to Zhang et al. and Wang et al.1,2.

SELECTION OF CITATIONS
SEARCH DETAIL
...