Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667313

ABSTRACT

The cellular transmembrane protein MARCH8 impedes the incorporation of various viral envelope glycoproteins, such as the HIV-1 envelope glycoprotein (Env) and vesicular stomatitis virus G-glycoprotein (VSV-G), into virions by downregulating them from the surface of virus-producing cells. This downregulation significantly reduces the efficiency of virus infection. In this study, we aimed to further characterize this host protein by investigating its species specificity and the domains responsible for its antiviral activity, as well as its ability to inhibit cell-to-cell HIV-1 infection. We found that the antiviral function of MARCH8 is well conserved in the rhesus macaque, mouse, and bovine versions. The RING-CH domains of these versions are functionally important for inhibiting HIV-1 Env and VSV-G-pseudovirus infection, whereas tyrosine motifs are crucial for the former only, consistent with findings in human MARCH8. Through analysis of chimeric proteins between MARCH8 and non-antiviral MARCH3, we determined that both the N-terminal and C-terminal cytoplasmic tails, as well as presumably the N-terminal transmembrane domain, of MARCH8 are critical for its antiviral activity. Notably, we found that MARCH8 is unable to block cell-to-cell HIV-1 infection, likely due to its insufficient downregulation of Env. These findings offer further insights into understanding the biology of this antiviral transmembrane protein.


Subject(s)
HIV-1 , Membrane Proteins , Humans , Animals , Membrane Proteins/metabolism , HEK293 Cells , Ubiquitin-Protein Ligases/metabolism , Mice , Cattle , Macaca mulatta , HIV Infections/virology , HIV Infections/metabolism , Antiviral Agents/pharmacology , Protein Domains , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
J Environ Manage ; 356: 120741, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522273

ABSTRACT

Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.


Subject(s)
Composting , Temperature , Solid Waste , Carbon , Fermentation , Nitrogen , Soil , Manure
3.
J Vis Exp ; (200)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37955369

ABSTRACT

In this study, we present a flexible wearable supernumerary robotic limb that helps chronic stroke patients with finger rehabilitation and grasping movements. The design of this innovative limb draws inspiration from bending pneumatic muscles and the unique characteristics of an elephant's trunk tip. It places a strong emphasis on crucial factors such as lightweight construction, safety, compliance, waterproofing, and achieving a high output-to-weight/pressure ratio. The proposed structure enables the robotic limb to perform both envelope and fingertip grasping. Human-robot interaction is facilitated through a flexible bending sensor, detecting the wearer's finger movements and connecting them to motion control via a threshold segmentation method. Additionally, the system is portable for versatile daily use. To validate the effectiveness of this innovation, real-world experiments involving six chronic stroke patients and three healthy volunteers were conducted. The feedback received through questionnaires indicates that the designed mechanism holds immense promise in assisting chronic stroke patients with their daily grasping activities, potentially improving their quality of life and rehabilitation outcomes.


Subject(s)
Robotic Surgical Procedures , Robotics , Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Robotics/methods , Stroke Rehabilitation/methods , Quality of Life
4.
Adv Mater ; 35(44): e2306923, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37607263

ABSTRACT

Photogenerated charge localization on material surfaces significantly affects photocatalytic performance, especially for multi-electron CO2 reduction. Dual single atom (DSA) catalysts with flexibly designed reactive sites have received significant research attention for CO2 photoreduction. However, the charge transfer mechanism in DSA catalysts remains poorly understood. Here, for the first time, a reversed electron transfer mechanism on Au and Co DSA catalysts is reported. In situ characterizations confirm that for CdS nanoparticles (NPs) loaded with Co or Au single atoms, photogenerated electrons are localized around the single atom of Co or Au. In DSA catalysts, however, electrons are delocalized from Au and accumulate around Co atoms. Importantly, combined advanced spectroscopic findings and theoretical computation evidence that this reversed electron transfer in Au/Co DSA boosts charge redistribution and activation of CO2 molecules, leading to highly significantly increased photocatalytic CO2 reduction, for example, Au/Co DSA loaded CdS exhibits, respectively, ≈2800% and 700% greater yields for CO and CH4 compared with that for CdS alone. Reversed electron transfer in DSA can be used for practical design for charge redistribution and to boost photoreduction of CO2 . Findings will be of benefit to researchers and manufacturers in DSA-loaded catalysts for the generation of solar fuels.

5.
Front Public Health ; 11: 1086830, 2023.
Article in English | MEDLINE | ID: mdl-36908474

ABSTRACT

Background: No prior study had reported the psychological and physical recovery of patients with COVID-19 2~3 years after discharge from the hospital. Moreover, it is not clear whether there is any difference in the health status of the patients with COVID-19 of different ages after discharge from the hospital. Methods: Embedding in the "Rehabilitation Care Project for Medical Staff Infected with COVID-19" in China, this study included 271 health care workers (HCWs) with severe COVID-19. Their status of health-related quality of life, persistent symptoms, functional fitness and immune function at 28 months after discharge were followed, and compared according to tertiles of age at SARS-CoV-2 infection (group of younger (≤ 33 years); medium (34-42 years); and older (≥43 years)). Multivariate linear regression and multivariable adjusted logistic regression models were applied in investigating the associations of age at SARS-CoV-2 infection and outcomes. Results: At 28 months after discharge, 76% of the HCWs with severe COVID-19 had symptom of fatigue/weakness; 18.7% of the HCWs with severe COVID-19 did not fully recover their functional fitness; the decrease of CD3+ T cells, CD8+ T cells and the increase of natural killer cells accounted for 6.6, 6.6, and 5.5%, respectively. Compared with the HCWs with severe COVID-19 in younger group, HCWs with severe COVID-19 in older group had lower scores regarding physical functioning, role physical, bodily pain and role emotional; HCWs with severe COVID-19 in older group had higher risk of cough, joint pain, hearing loss and sleep disorder; HCWs with severe COVID-19 in older group scored lower on flexibility test. The variance of relative numbers of CD3+ T cells, CD8+ T cells and natural killer cells among HCWs with severe COVID-19 of different age groups were significant. Conclusions: This study demonstrated that older HCWs with severe COVID-19 recovered slower than those with younger age regarding health-related quality of life, persistent symptoms, functional fitness and immune function at 28 months after discharge. Effective exercise interventions regarding flexibility should be performed timely to speed their rehabilitation, especially among those with older age.


Subject(s)
COVID-19 , Humans , Aged , Adult , Child, Preschool , SARS-CoV-2 , Cohort Studies , Patient Discharge , Quality of Life , CD8-Positive T-Lymphocytes , Health Personnel
6.
J Zhejiang Univ Sci B ; 24(3): 269-274, 2023 Mar 15.
Article in English, Chinese | MEDLINE | ID: mdl-36916002

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. It is highly contagious and can cause death in severe cases. As reported by the World Health Organization (WHO), as of 6:36 pm Central European Summer Time (CEST), 12 August 2022, there had been 585 950 285 confirmed cases of COVID-19, including 6 425 422 deaths (WHO, 2022).


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Mental Health , Cohort Studies , Quality of Life , China/epidemiology , Health Personnel , Hospitals , Lung
7.
Angew Chem Int Ed Engl ; 61(50): e202212355, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36259317

ABSTRACT

Photocatalytic performance can be optimized via introduction of reactive sites. However, it is practically difficult to engineer these on specific photocatalyst surfaces, because of limited understanding of atomic-level structure-activity. Here we report a facile sonication-assisted chemical reduction for specific facets regulation via oxygen deprivation on Bi-based photocatalysts. The modified Bi2 MoO6 nanosheets exhibit 61.5 and 12.4 µmol g-1 for CO and CH4 production respectively, ≈3 times greater than for pristine catalyst, together with excellent stability/reproducibility of ≈20 h. By combining advanced characterizations and simulation, we confirm the reaction mechanism on surface-regulated photocatalysts, namely, induced defects on highly-active surface accelerate charge separation/transfer and lower the energy barrier for surface CO2 adsorption/activation/reduction. Promisingly, this method appears generalizable to a wider range of materials.

8.
Int J Infect Dis ; 123: 119-126, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35793753

ABSTRACT

OBJECTIVES: This study aimed to evaluate the recovery of functional fitness, lung function, and immune function in healthcare workers (HCWs) with nonsevere and severe COVID-19 at 13 months after discharge from the hospital. METHODS: The participants of "Rehabilitation Care Project for Medical Staff Infected with COVID-19" underwent a functional fitness test (muscle strength, flexibility, and agility/dynamic balance), lung function test, and immune function test (including cytokines and lymphocyte subsets) at 13 months after discharge. RESULTS: The project included 779 HCWs (316 nonsevere COVID-19 and 463 severe COVID-19). This study found that 29.1% (130/446) of the HCWs have not yet recovered their functional fitness. The most affected lung function indicator was lung perfusion capacity (34% with diffusion capacity for carbon monoxide-single breath <80%). The increase of interleukin-6 (64/534, 12.0%) and natural killer cells (44/534, 8.2%) and the decrease of CD3+ T cells (58/534, 10.9%) and CD4+ T cells (26/534, 4.9%) still existed at 13 months after discharge. No significant difference was found in the HCWs with nonsevere and severe COVID-19 regarding recovery of functional fitness, lung function, and immune function at 13 months after discharge. CONCLUSION: The majority of Chinese HCWs with COVID-19 had recovered their functional fitness, lung function, and immune function, and the recovery status in HCWs with severe COVID-19 is no worse than that in HCWs with nonsevere COVID-19 at 13 months after discharge from the hospital.


Subject(s)
COVID-19 , Carbon Monoxide , Health Personnel , Hospitals , Humans , Immunity , Interleukin-6 , Lung , Patient Discharge , Prospective Studies , SARS-CoV-2
9.
Microbiol Spectr ; 10(1): e0061821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019698

ABSTRACT

The host transmembrane protein MARCH8 is a RING finger E3 ubiquitin ligase that downregulates various host transmembrane proteins, such as MHC-II. We have recently reported that MARCH8 expression in virus-producing cells impairs viral infectivity by reducing virion incorporation of not only HIV-1 envelope glycoprotein but also vesicular stomatitis virus G-glycoprotein through two different pathways. However, the MARCH8 inhibition spectrum remains largely unknown. Here, we show the antiviral spectrum of MARCH8 using viruses pseudotyped with a variety of viral envelope glycoproteins. Infection experiments revealed that viral envelope glycoproteins derived from the rhabdovirus, arenavirus, coronavirus, and togavirus (alphavirus) families were sensitive to MARCH8-mediated inhibition. Lysine mutations at the cytoplasmic tails of rabies virus-G, lymphocytic choriomeningitis virus glycoproteins, SARS-CoV and SARS-CoV-2 spike proteins, and Chikungunya virus and Ross River virus E2 proteins conferred resistance to MARCH8. Immunofluorescence showed impaired downregulation of the mutants of these viral envelope glycoproteins by MARCH8, followed by lysosomal degradation, suggesting that MARCH8-mediated ubiquitination leads to intracellular degradation of these envelopes. Indeed, rabies virus-G and Chikungunya virus E2 proteins proved to be clearly ubiquitinated. We conclude that MARCH8 has inhibitory activity on a variety of viral envelope glycoproteins whose cytoplasmic lysine residues are targeted by this antiviral factor. IMPORTANCE A member of the MARCH E3 ubiquitin ligase family, MARCH8, downregulates many different kinds of host transmembrane proteins, resulting in the regulation of cellular homeostasis. On the other hands, MARCH8 acts as an antiviral factor when it binds to and downregulates HIV-1 envelope glycoprotein and vesicular stomatitis virus G-glycoprotein that are viral transmembrane proteins. This study reveals that, as in the case of cellular membrane proteins, MARCH8 shows broad-spectrum inhibition against various viral envelope glycoproteins by recognizing their cytoplasmic lysine residues, resulting in lysosomal degradation.


Subject(s)
Antiviral Agents/pharmacology , Lysine/drug effects , Ubiquitin-Protein Ligases/pharmacology , Viral Envelope Proteins/chemistry , Blotting, Western , Down-Regulation , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , Lysine/metabolism , Ubiquitination/physiology , Viral Envelope Proteins/drug effects
10.
FEBS J ; 289(13): 3642-3654, 2022 07.
Article in English | MEDLINE | ID: mdl-33993615

ABSTRACT

Membrane-associated RING-CH (MARCH) family member proteins are RING-finger E3 ubiquitin ligases that are known to downregulate cellular transmembrane proteins. MARCH8 is a novel antiviral factor that inhibits HIV-1 envelope glycoprotein and vesicular stomatitis virus G by downregulating these envelope glycoproteins from the cell surface, resulting in their reduced incorporation into virions. More recently, we have found that MARCH8 reduces viral infectivity via two different mechanisms. Additionally, several groups have reported further antiviral or virus-supportive functions of the MARCH8 protein and its other cellular mechanisms. In this review, we summarize the current knowledge about the molecular mechanisms by which MARCH8 can regulate cellular homeostasis and inhibit and occasionally support enveloped virus infection.


Subject(s)
Virion , Viruses , Antiviral Agents/metabolism , Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Envelope Proteins/genetics , Virion/metabolism , Viruses/metabolism
11.
Mol Ecol Resour ; 22(3): 988-1001, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34652864

ABSTRACT

Rhododendron henanense subsp. lingbaoense (hereafter referred to as R. henanense) is an endemic species naturally distributed in the Henan province, China, with high horticultural, ornamental and medicinal value. Herein, we report a de novo genome assembly for R. henanense using a combination of PacBio long read and Illumina short read sequencing technologies. In total, we assembled 634.07 Mb with a contig N50 of 2.5 Mb, representing ~96.93% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of R. henanense genome were assembled, covering ~98.21% of the genome assembly. The genome was composed of ~65.76% repetitive sequences and 31,098 protein-coding genes, 88.77% of which could be functionally annotated. Rhododendron henanense displayed a high level of synteny with other Rhododendron species from the Hymenanthes subgenus. Our data also suggests that R. henanense genes related to stress responses have undergone expansion, which may underly the unique abiotic and biotic stress resistance of the species. This alpine Rhododendron chromosome-scale genome assembly provides fundamental molecular resources for germplasm conservation, breeding efforts, evolutionary studies, and elucidating the unique biological characteristics of R. henanense.


Subject(s)
Rhododendron , Chromosomes , Genome , Molecular Sequence Annotation , Phylogeny , Plant Breeding , Rhododendron/genetics
12.
Front Plant Sci ; 13: 1093859, 2022.
Article in English | MEDLINE | ID: mdl-36743563

ABSTRACT

Introduction: Low light stress inhibits plant growth due to a line of physiological disruptions in plants, and is one of the major barriers to protected cucumber cultivation in northern China. Methods: To comprehensively understand the responses of cucumber seedlings to low-light stress, the low-light-tolerant line (M67) and The low-light-sensitive line (M14) were conducted for the analysis of photosynthetic phenotype, RNA sequencing (RNA-seq) and the expression level of photosynthesis-related genes in leaves under low-light stress and normal light condition (control). Results: The results showed that there was a sharp decrease in the photosynthate accumulation in the leaves of the sensitive line, M14, resulting in a large decrease in the photosynthetic rate (Pn) (with 31.99%) of leaves compared to that of the control, which may have been caused by damage to chloroplast ultrastructure or a decrease in chlorophyll (Chl) content. However, under the same low-light treatment, there was no large drop in the photosynthate accumulation and even no decrease in Pn and Chl content for the tolerant line, M67. Moreover, results of gene expression analysis showed that the expression level of genes CsPsbQ (the photosystem II oxygen-evolving enhancer protein 3 gene) and Csgamma (ATPase, F1 complex gene) in the M14 leaves decreased sharply (by 35.04% and 30.58%, respectively) compared with the levels in the M67 leaves, which decreased by 14.78% and 23.61%, respectively. The expression levels of genes involved in Chl synthesis and carbohydrate biosynthesis in the leaves of M14 decreased markedly after low-light treatment; in contrast, there were no sharp decreases or changes in leaves of M67. Discussion: Over all, the ability of cucumber to respond to low-light stress, as determined on the basis of the degree of damage in leaf structure and chloroplast ultrastructure, which corresponded to decreased gene expression levels and ATP phosphorylase activity, significantly differed between different low-light-tolerant lines, which was manifested as significant differences in photosynthetic capacity between them. Results of this study will be a reference for comprehensive insight into the physiological mechanism involved in the low-light tolerance of cucumber.

13.
BMC Med ; 19(1): 163, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34256745

ABSTRACT

BACKGROUND: Few studies had described the health consequences of patients with coronavirus disease 2019 (COVID-19) especially in those with severe infections after discharge from hospital. Moreover, no research had reported the health consequences in health care workers (HCWs) with COVID-19 after discharge. We aimed to investigate the health consequences in HCWs with severe COVID-19 after discharge from hospital in Hubei Province, China. METHODS: We conducted an ambidirectional cohort study in "Rehabilitation Care Project for Medical Staff Infected with COVID-19" in China. The participants were asked to complete three physical examinations (including the tests of functional fitness, antibodies to SARS-CoV-2 and immunological indicators) at 153.4 (143.3, 164.8), 244.3 (232.4, 259.1), and 329.4 (319.4, 339.3) days after discharge, respectively. Mann-Whitney U test, Kruskal-Wallis test, t test, one-way ANOVA, χ2, and Fisher's exact test were used to assess the variance between two or more groups where appropriate. RESULTS: Of 333 HCWs with severe COVID-19, the HCWs' median age was 36.0 (31.0, 43.0) years, 257 (77%) were female, and 191 (57%) were nurses. Our research found that 70.4% (114/162), 48.9% (67/137), and 29.6% (37/125) of the HCWs with severe COVID-19 were considered to have not recovered their functional fitness in the first, second, and third functional fitness tests, respectively. The HCWs showed improvement in muscle strength, flexibility, and agility/dynamic balance after discharge in follow-up visits. The seropositivity of IgM (17.0% vs. 6.6%) and median titres of IgM (3.0 vs. 1.4) and IgG (60.3 vs. 45.3) in the third physical examination was higher than that in the first physical examination. In the third physical examination, there still were 42.1% and 45.9% of the HCWs had elevated levels of IL-6 and TNF-α, and 11.9% and 6.3% of the HCWs had decreased relative numbers of CD3+ T cells and CD4+ T cells. CONCLUSION: The HCWs with severe COVID-19 showed improvement in functional fitness within 1 year after discharge, active intervention should be applied to help their recovery if necessary. It is of vital significance to continue monitoring the functional fitness, antibodies to SARS-CoV-2 and immunological indicators after 1 year of discharge from hospital in HCWs with severe COVID-19.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19 , Exercise Test , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/rehabilitation , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , China/epidemiology , Exercise Test/methods , Exercise Test/statistics & numerical data , Female , Follow-Up Studies , Functional Status , Humans , Interleukin-6/blood , Male , Patient Discharge/statistics & numerical data , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood
14.
Plant Physiol Biochem ; 164: 279-288, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34020168

ABSTRACT

Tree peony (Paeonia suffruticosa Andr.) is a well-known ornamental flower in China with diverse colors. Flower color is one of the most important economic characteristics of tree peony and is mainly determined by anthocyanins. In this study, we cloned a PsMYB58 gene, which contained a 654 bp open reading frame (ORF), encoding a polypeptide of 218 amino acids. Sequence and phylogenetic analysis indicated that PsMYB58 is an anthocyanin regulatory R2R3-MYB gene. The transcription levels of PsMYB58 in different developmental stages of tree peony flowers were similar to those of the anthocyanin biosynthetic genes PsCHS, PsCHI, PsDFR, and PsANS. A bimolecular fluorescence complementation assay showed that PsMYB58 interacted with PsbHLH1 and PsbHLH3 in vivo. The overexpression of PsMYB58 in tobacco enhanced anthocyanin accumulation in various organs. Comparative transcriptome analysis showed that 943 genes were upregulated and 1203 downregulated in PsMYB58 transgenic tobacco, among which genes involved in the anthocyanin pathway were positively activated. Real-time quantitative PCR analysis verified that anthocyanin biosynthetic genes, including NtCHS, NtCHI, NtF3H, NtF3'H, NtDFR, and NtANS, and an anthocyanin regulatory bHLH gene, NtAN1b, were significantly upregulated in PsMYB58 transgenic tobacco. Our results indicated that PsMYB58 is a positive anthocyanin regulator in tree peony flowers. In summary, the functional identification of PsMYB58 furthers our understanding of the mechanism of peony flower color formation, thus providing a foundation for flower color improvement and molecular breeding.


Subject(s)
Paeonia , Anthocyanins , China , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Genes, myb , Paeonia/genetics , Paeonia/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
15.
ACS Cent Sci ; 7(1): 39-54, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33532568

ABSTRACT

Single-atom photocatalysts have demonstrated an enormous potential in producing value-added chemicals and/or fuels using sustainable and clean solar light to replace fossil fuels causing global energy and environmental issues. These photocatalysts not only exhibit outstanding activities, selectivity, and stabilities due to their distinct electronic structures and unsaturated coordination centers but also tremendously reduce the consumption of catalytic metals owing to the atomic dispersion of catalytic species. Besides, the single-atom active sites facilitate the elucidation of reaction mechanisms and understanding of the structure-performance relationships. Presently, apart from the well-known reactions (H2 production, N2 fixation, and CO2 conversion), various novel reactions are successfully catalyzed by single-atom photocatalysts possessing high efficiency, selectivity, and stability. In this contribution, we summarize and discuss the design and fabrication of single-atom photocatalysts for three different kinds of emerging reactions (i.e., reduction reactions, oxidation reactions, as well as redox reactions) to generate desirable chemicals and/or fuels. The relationships between the composition/structure of single-atom photocatalysts and their activity/selectivity/stability are explained in detail. Additionally, the insightful reaction mechanisms of single-atom photocatalysts are also introduced. Finally, we propose the possible opportunities in this area for the design and fabrication of brand-new high-performance single-atom photocatalysts.

17.
Nat Commun ; 12(1): 848, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558493

ABSTRACT

The causative agent of the COVID-19 pandemic, SARS-CoV-2, is steadily mutating during continuous transmission among humans. Such mutations can occur in the spike (S) protein that binds to the ACE2 receptor and is cleaved by TMPRSS2. However, whether S mutations affect SARS-CoV-2 cell entry remains unknown. Here, we show that naturally occurring S mutations can reduce or enhance cell entry via ACE2 and TMPRSS2. A SARS-CoV-2 S-pseudotyped lentivirus exhibits substantially lower entry than that of SARS-CoV S. Among S variants, the D614G mutant shows the highest cell entry, as supported by structural and binding analyses. Nevertheless, the D614G mutation does not affect neutralization by antisera against prototypic viruses. Taken together, we conclude that the D614G mutation increases cell entry by acquiring higher affinity to ACE2 while maintaining neutralization susceptibility. Based on these findings, further worldwide surveillance is required to understand SARS-CoV-2 transmissibility among humans.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/prevention & control , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization , Binding, Competitive , COVID-19/epidemiology , COVID-19/virology , Humans , Models, Molecular , Pandemics , Protein Binding , Protein Domains , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
18.
BMC Genet ; 21(1): 124, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33198624

ABSTRACT

BACKGROUND: R2R3 myeloblastosis (MYB) genes are widely distributed in plants and comprise one of the largest transcription factor gene families. They play important roles in the regulatory networks controlling development, metabolism, and stress responses. Researches on functional genes in tree peony are still in its infancy. To date, few MYB genes have thus far been reported. RESULTS: In this study, we constructed a comprehensive reference gene set by transcriptome sequencing to obtain R2R3 MYB genes. The transcriptomes of eight different tissues were sequenced, and 92,837 unigenes were obtained with an N50 of 1662 nt. A total of 48,435 unigenes (77.98%) were functionally annotated in public databases. Based on the assembly, we identified 57 R2R3 MYB genes containing full-length open reading frames, which clustered into 35 clades by phylogenetic analysis. PsMYB57 clustered with anthocyanin regulation genes in Arabidopsis and was mainly transcribed in the buds and young leaves. The overexpression of PsMYB57 induced anthocyanin accumulation in tobacco, and four detected anthocyanin structural genes, including NtCHS, NtF3'H, NtDFR, and NtANS, were upregulated. The two endogenous bHLH genes NtAn1a and NtAn1b were also upregulated and may work in combination with PsMYB57 in regulating anthocyanin structural genes. CONCLUSIONS: Our study offers a useful reference to the selection of candidate MYB genes for further functional studies in tree peony. Function analysis of PsMYB57 is helpful to understand the color accumulation in vegetative organs of tree peony. PsMYB57 is also a promising resource to improve plant color in molecular breeding.


Subject(s)
Anthocyanins/metabolism , Gene Expression Regulation, Plant , Paeonia/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Arabidopsis , Genes, Plant , Multigene Family , Phylogeny , Plants, Genetically Modified , Nicotiana , Transcriptome
19.
Sci Rep ; 10(1): 17449, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060599

ABSTRACT

This study investigated the macroscopic physical and mechanical properties of Guiyang red clay during surcharge loading, lateral excavation and lateral unloading with axial loading, and clarified the failure mechanism of microstructure before and after shear under different stress paths of CTC, RTC and TC. Consolidated undrained triaxial shear permeability, SEM scanning, XRF fluorescence spectrum analysis and XRD diffraction tests were conducted to simulate the actual engineering conditions. The stress-strain curve, shear strength, pore water pressure variation rule and macroscopic failure mode of soil samples under different stress paths were analysed. In addition, Image Pro Plus 6.0 and PCAS were used to study the relationship between the macro mechanical properties and micro microstructure failure under different stress paths. The stress-strain curves from CTC, RTC and TC in CU tests were different, with the peak values of shear stress under the three stress paths being P-increasing, equal P-path and P-decreasing path. Moreover, the internal friction angle and cohesion of the increasing P path were higher than those of equal P path and decreasing P path, hence, the influence of stress paths on the cohesion is greater than that of internal friction angle. The pore water pressure is strongly dependent on the stress path, and the variation characteristics of pore water pressure are consistent with the change in the law of the stress-strain curve. Under the same confining pressure in the P-increasing path, the shear failure zone runs through the whole soil sample, and the shear failure zone is significant, whereas under the condition of the P-reducing path, the shear failure angle of soil sample is about 65°, 55° and 45°, and in the equal P path, the soil sample is dominated by the confining pressure, with no obvious microcrack on the surface of the soil sample. The difference is that the distribution of pores in the path of increasing P and equal P is directional, and the anisotropy rate is small, while the distribution of pores in soil samples with shear failure and before shear is random and the anisotropy rate is high.

20.
Sci Rep ; 10(1): 18003, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093454

ABSTRACT

Unconsolidated-undrained (UU) tests were conducted to investigate the mechanical and morphological properties of undisturbed and remoulded red clay, with the microscopic characteristics determined by scanning electron microscopy (SEM). The microanalysis showed that the red clay aggregate was granular, curved-slice and thin layered and flower-shaped ellipsoid, with X and Y-type cracks and pores in the undisturbed red clay. Moreover, the contact modes of red clay aggregates were point contact, line contact, surface contact and mosaic contact. In addition, the main microstructure red clay was flocculation, honeycomb and pseudosphere structures. The pores in undisturbed soil were arranged in one direction, with no obvious directionality in remoulded red clay. The pore area, perimeter and maximum length of undisturbed red clay were smaller than those of remoulded red clay, with a larger probability entropy, probability distribution index and fractal dimension of pore distribution of undisturbed red clay than remoulded red clay. UU tests showed that the shear strength of undisturbed red clay was higher than that of remoulded red clay.

SELECTION OF CITATIONS
SEARCH DETAIL
...