Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Front Immunol ; 13: 1055304, 2022.
Article in English | MEDLINE | ID: mdl-36505486

ABSTRACT

Background: Anoikis is a form of programmed cell death or programmed cell death(PCD) for short. Studies suggest that anoikis involves in the decisive steps of tumor progression and cancer cell metastasis and spread, but what part it plays in bladder cancer remains unclear. We sought to screen for anoikis-correlated long non-coding RNA (lncRNA) so that we can build a risk model to understand its ability to predict bladder cancer prognosis and the immune landscape. Methods: We screened seven anoikis-related lncRNAs (arlncRNAs) from The Cancer Genome Atlas (TCGA) and designed a risk model. It was validated through ROC curves and clinicopathological correlation analysis, and demonstrated to be an independent factor of prognosis prediction by uni- and multi-COX regression. In the meantime, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, and half-maximal inhibitory concentration prediction (IC50) were implemented with the model. Moreover, we divided bladder cancer patients into three subtypes by consensus clustering analysis to further study the differences in prognosis, immune infiltration level, immune checkpoints, and drug susceptibility. Result: We designed a risk model of seven arlncRNAs, and proved its accuracy using ROC curves. COX regression indicated that the model might be an independent prediction factor of bladder cancer prognosis. KEGG enrichment analysis showed it was enriched in tumors and immune-related pathways among the people at high risk. Immune correlation analysis and drug susceptibility results indicated that it had higher immune infiltration and might have a better immunotherapy efficacy for high-risk groups. Of the three subtypes classified by consensus clustering analysis, cluster 3 revealed a positive prognosis, and cluster 2 showed the highest level of immune infiltration and was sensitive to most chemistries. This is helpful for us to discover more precise immunotherapy for bladder cancer patients. Conclusion: In a nutshell, we found seven arlncRNAs and built a risk model that can identify different bladder cancer subtypes and predict the prognosis of bladder cancer patients. Immune-related and drug sensitivity researches demonstrate it can provide individual therapeutic schedule with greater precision for bladder cancer patients.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , RNA, Long Noncoding/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Immunotherapy , Urinary Bladder , Apoptosis
2.
Environ Sci Ecotechnol ; 9: 100146, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36157854

ABSTRACT

Bacteria are key denitrifiers in the reduction of nitrate (NO3 --N), which is a contaminant in wastewater treatment plants (WWTPs). They can also produce carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the autotrophic hydrogen-oxidizing bacterium Rhodoblastus sp. TH20 was isolated for sustainable treatment of NO3 --N in wastewater. Efficient removal of NO3 --N and recovery of biomass nitrogen were achieved. Up to 99% of NO3 --N was removed without accumulation of nitrite and N2O, consuming CO2 of 3.25 mol for each mole of NO3 --N removed. The overall removal rate of NO3 --N reached 1.1 mg L-1 h-1 with a biomass content of approximately 0.71 g L-1 within 72 h. TH20 participated in NO3 --N assimilation and aerobic denitrification. Results from 15N-labeled-nitrate test indicated that removed NO3 --N was assimilated into organic nitrogen, showing an assimilation efficiency of 58%. Seventeen amino acids were detected, accounting for 43% of the biomass. Nitrogen loss through aerobic denitrification was only approximately 42% of total nitrogen. This study suggests that TH20 can be applied in WWTP facilities for water purification and production of valuable biomass to mitigate CO2 and N2O emissions.

3.
Huan Jing Ke Xue ; 42(7): 3482-3493, 2021 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-34212675

ABSTRACT

As the problem of global warming becomes increasingly serious, the greenhouse gas (GHG) emission reduction measures of constructed wetlands (CWs) have drawn significant attention. Ferric-carbon micro-electrolysis exhibits an excellent effect on wastewater purification as well as the potential to reduce GHG emissions. Therefore, to explore the impact of ferric-carbon micro-electrolysis on GHG emissions from intermittent aeration constructed wetlands, four kinds of different wetlands with different fillers were constructed. The four fillers were ferric-carbon micro-electrolysis filler+gravel (CW-Ⅰ), ferric-carbon micro-electrolysis filler+zeolite (CW-Ⅱ), zeolite (CW-Ⅲ), and gravel (CW-Ⅳ). Intermittent aeration technology was used to aerate the wetland systems. The results show that ferric-carbon micro-electrolysis significantly improved the nitrogen removal efficiency of the intermittent aeration constructed wetlands and reduced GHG emissions. Compared with CW-Ⅳ, the CH4 fluxes of CW-Ⅰ, CW-Ⅱ, and CW-Ⅲ decreased by 32.81% (P<0.05), 52.66% (P<0.05), and 54.50% (P<0.05), respectively. Among them, zeolite exhibited a stronger reduction effect on CH4 emissions in both the aeration and non-aeration sections. The ferric-carbon micro-electrolysis substantially reduced N2O emissions. In comparison with CW-Ⅳ, CW-, and CW-Ⅱ achieved N2O emission reduction by 30.29%-60.63% (P<0.05) and 43.10%-73.87% (P<0.05), respectively. During a typical hydraulic retention period, the comprehensive GWP caused by CH4 and N2O emitted by each group of wetland system are (85.21±6.48), (49.24±3.52), (127.97±11.44), and (137.13±11.45) g·m-2, respectively. The combined use of ferric-carbon micro-electrolysis and zeolite effectively reduces GHG emissions in constructed wetlands. Overall, ferric-carbon micro-electrolysis combined with zeolite (CW-Ⅱ) can be regarded as one of the valuable filler combination methods for constructed wetlands, which can ensure high removal efficiency of pollutants and effective GHG emission reduction in constructed wetlands.


Subject(s)
Greenhouse Gases , Carbon , Carbon Dioxide/analysis , Electrolysis , Greenhouse Effect , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Wetlands
4.
Huan Jing Ke Xue ; 42(6): 2875-2884, 2021 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-34032087

ABSTRACT

Ferric-carbon micro-electrolysis fillers and zeolite have been increasingly used as substrates in constructed wetlands due to their good wastewater pollution-removal efficiencies. To explore the effects of different fillers on wastewater treatment in constructed wetlands, four constructed wetlands were examined with vertical subsurface flow areas filled with ferric-carbon micro-electrolysis filler+gravel (CW-A), ferric-carbon micro-electrolysis filler+zeolite (CW-B), zeolite (CW-C), and gravel (CW-D). In addition, intermittent aeration was used to improve the dissolved oxygen (DO) environment. The results showed that, compared with CW-D, the ferric-carbon micro-electrolysis filler significantly increased the dissolved oxygen (DO, P<0.05) and pH (P<0.05) of the effluent from the wetlands. The mean removal efficiency of chemical oxygen demand (COD) in the four constructed wetlands were more than 95% (P>0.05). For TN, the mean removal efficiency of CW-A,-B, and-C was 7.94% (P<0.05), 9.29% (P<0.05), and 3.63% (P<0.05) higher than that of CW-D, respectively. The contribution of ferric-carbon micro-electrolysis filler and zeolite to improving the TN removal efficiency of the constructed wetlands was 73.55% and 26.45%, respectively. The mean removal efficiency of NH4+ in the four wetlands ranged from 67.93% to 76.90%, and compared with CW-D, the other treatments significantly improved the removal efficiency of NH4+ (P<0.05). The ferric-carbon micro-electrolysis filler had an excellent removal effect on NO3-, with a removal efficiency of more than 99%, which was significantly higher than the constructed wetlands without ferric-carbon micro-electrolysis (P<0.05). Considering the treatment effect of the organic pollutants and the nitrogen-containing pollutants, CW-B achieved the best removal efficiency in constructed wetlands with intermittent aeration.

5.
Sci Total Environ ; 671: 208-214, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30928750

ABSTRACT

In this study, bacterial mercury (Hg) methylation was investigated under the influence of red-tide algae of Skeletonema costatum (S. costatum). The distribution and speciation of total mercury (THg) and methylmercury (MeHg) were profiled by employing Geobacter metallireducens (G. metallireducens GS-15) as the methylating bacteria. G. metallireducens GS-15 showed different capabilities in methylating different inorganic forms of Hg(II) (HgCl2) and Hg(II)-Algae (HgCl2 captured by S. costatum) to MeHg. In the absence of S. costatum, a maximum methylation efficiency of 4.31 ±â€¯0.47% was achieved with Hg(II) of 1-100 µg L-1, while accelerated MeHg formation rate was detected at a higher initial Hg(II) concentration. In the presence of S. costatum, there were distinct changes in the distribution of THg and MeHg by altering the bioavailability of Hg(II) and Hg(II)-Algae. A larger proportion of THg tended to be retained by a higher algal biomass, resulting in decreased methylation efficiencies. The methylation efficiency of Hg(II) decreased from 3.01 ±â€¯0.10% to 1.01 ±â€¯0.01% with 10-mL and 250-mL algal media, and that of Hg(II)-Algae decreased from 0.83 ±â€¯0.13% to 0.22 ±â€¯0.01% with 10-mL and 250-mL Hg(II)-Algae media. Fourier transform infrared spectrometry, surface charge properties and elemental compositions of S. costatum were used to infer that amine, carboxyl and sulfonate functional groups were most likely to interact with Hg(II) through complexation and/or electrostatic attraction. These results suggest that red-tide algae may be an influencing factor on bacterial Hg methylation in eutrophic water bodies.


Subject(s)
Diatoms/metabolism , Geobacter/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...