Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Virol Sin ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823782

ABSTRACT

Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.

2.
J Agric Food Chem ; 72(19): 10936-10943, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691835

ABSTRACT

RNAi plays a crucial role in insect gene function research and pest control field. Nonetheless, the variable efficiency of RNAi across diverse insects and off-target effects also limited its further application. In this study, we cloned six essential housekeeping genes from Solenopsis invicta and conducted RNAi experiments by orally administering dsRNA. Then, we found that mixing with liposomes significantly enhanced the RNAi efficiency by targeting for SiV-ATPaseE. Additionally, we observed a certain lethal effect of this dsRNA on queens by our established RNAi system. Furthermore, no strict sequence-related off-target effects were detected. Finally, the RNAi effect of large-scale bacteria expressing dsRNA was successfully confirmed for controlling S. invicta. In summary, this study established an RNAi system for S. invicta and provided a research template for the future development of nucleic acid drugs based on RNAi.


Subject(s)
Ants , Insect Proteins , RNA Interference , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Ants/genetics , Insect Control/methods , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Pest Control, Biological/methods , Female , Fire Ants
3.
Chem Res Toxicol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815162

ABSTRACT

Multiple myeloma is a hematological cancer that can be treated but remains incurable. With the advancement of science and technology, more drugs have been developed for myeloma chemotherapy that greatly improve the quality of life of patients. However, relapse remains a serious problem puzzling patients and doctors. Thus, developing more highly active and specific inhibitors is urgent for myeloma-targeted therapy. In this study, we identified the SIRT3 inhibitor 3-TYP (3-(1H-1,2,3-triazol-4-yl) pyridine) after screening a histone modification compound library, which showed high cytotoxicity and induced DNA damage in myeloma cells. Furthermore, the inhibitory effect of 3-TYP in our xenograft tumor studies also confirmed that compound 3-TYP could inhibit primary myeloma growth by reducing c-Myc protein stability by decreasing c-Myc Ser62 phosphorylation levels. Taken together, the results of our study identified 3-TYP as a novel c-Myc inhibitor, which could be a potential chemotherapeutic agent to target multiple myeloma.

4.
Virol J ; 21(1): 107, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720392

ABSTRACT

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Subject(s)
Autophagy , Herpesvirus 1, Suid , Interferon-beta , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Animals , Humans , Cell Line , HEK293 Cells , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/immunology , Host-Pathogen Interactions , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Pseudorabies/virology , Pseudorabies/metabolism , Pseudorabies/immunology , Viral Proteins/metabolism , Viral Proteins/genetics , Swine , Mesocricetus
5.
J Environ Sci (China) ; 143: 201-212, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644017

ABSTRACT

Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.


Subject(s)
Benzene , Cobalt , Oxidation-Reduction , Oxides , Silver , Benzene/chemistry , Cobalt/chemistry , Silver/chemistry , Catalysis , Oxides/chemistry , Models, Chemical , Air Pollutants/chemistry
6.
Article in English | MEDLINE | ID: mdl-38649427

ABSTRACT

Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.

7.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561315

ABSTRACT

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Reproducibility of Results , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/pharmacology , Plant Immunity/physiology , Gene Expression Regulation, Plant , Protein Kinases/genetics , Protein Kinases/metabolism
8.
Angew Chem Int Ed Engl ; : e202405676, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606914

ABSTRACT

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

9.
Clin Exp Rheumatol ; 42(4): 843-851, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607693

ABSTRACT

OBJECTIVES: Coronary artery calcification (CAC) is frequently observed in Takayasu's arteritis (TAK). Our objective is to calculate the prevalence and severity of CAC in TAK, while evaluating the influence of traditional cardiovascular risk factors, glucocorticoid exposure, and disease activity on CAC. METHODS: This retrospective study involved 155 TAK patients. We measured the Agatston score by coronary computed tomography angiography (CCTA) and categorised all patients into groups with or without CAC (41 vs. 114) to compare clinical characteristics and ancillary findings between the two groups. RESULTS: Among the TAK patients, a total of 41 TAK patients (26.45%) exhibited CAC. Age of onset, disease duration, history of hypertension, history of hyperlipidaemia, Numano V and glucocorticoid use emerged as the independent risk factors for developing CAC in TAK (OR [95% CI] 1.084[1.028-1.142], p=0.003; 1.005 [1.001-1.010], p=0.020; 4.792 [1.713-13.411], p=0.003; 4.199 [1.087-16.219], p=0.037; 3.287 [1.070-10.100], p=0.038; 3.558[1.269-9.977], p=0.016). Nonetheless, CAC was not associated with disease activity. Moreover, the extent of calcification score in TAK showed a positive correlation with the number of traditional cardiovascular risk factors. CONCLUSIONS: We recommend CCTA screening for Numano V classified TAK patients. Glucocorticoid usage significantly escalates the risk of CAC. Therefore, in cases of effectively controlled disease, the inclusion of immunosuppressants aimed at reducing glucocorticoid dosage is advisable.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Takayasu Arteritis , Vascular Calcification , Humans , Takayasu Arteritis/diagnostic imaging , Takayasu Arteritis/epidemiology , Takayasu Arteritis/drug therapy , Takayasu Arteritis/complications , Female , Male , Retrospective Studies , Adult , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/etiology , Vascular Calcification/diagnostic imaging , Vascular Calcification/epidemiology , Middle Aged , Risk Factors , Prevalence , Severity of Illness Index , Glucocorticoids/therapeutic use , Glucocorticoids/adverse effects , Young Adult , Heart Disease Risk Factors
10.
Int Immunopharmacol ; 132: 111925, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579562

ABSTRACT

Noncoding RNAs have been shown to play essential roles in hypoxic pulmonary hypertension (HPH). Our preliminary data showed that HPH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the whole transcriptome RNA expression patterns and interactions in a mice HPH model treated with FGF21. By whole-transcriptome sequencing, differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs were successfully identified in normoxia (Nx) vs. hypoxia (Hx) and Hx vs. hypoxia + FGF21 (Hx + F21). Differentially expressed mRNAs, miRNAs, lncRNAs, and circRNAs regulated by hypoxia and FGF21 were selected through intersection analysis. Based on prediction databases and sequencing data, differentially co-expressed mRNAs, miRNAs, lncRNAs, and circRNAs were further screened, followed by functional enrichment analysis. MAPK signaling pathway and epigenetic modification were enriched and may play fundamental roles in the therapeutic effects of FGF21. The ceRNA regulatory network of lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA was constructed with miR-7a-5p, miR-449c-5p, miR-676-3p and miR-674-3p as the core. In addition, quantitative real-time PCR experiments were employed to verify the whole-transcriptome sequencing data. The results of luciferase reporter assays highlighted the relationship between miR-449c-5p and XR_878320.1, miR-449c-5p and Stab2, miR-449c-5p and circ_mtcp1, which suggesting that miR-449c-5p may be a key regulator of FGF21 in the treatment of PH. Taken together, this study provides potential biomarkers, pathways, and ceRNA regulatory networks in HPH treated with FGF21 and will provide an experimental basis for the clinical application of FGF21 in PH.


Subject(s)
Fibroblast Growth Factors , Gene Regulatory Networks , Hypertension, Pulmonary , MicroRNAs , RNA, Long Noncoding , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/therapeutic use , Animals , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/drug therapy , MicroRNAs/genetics , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice, Inbred C57BL , Male , Transcriptome , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Hypoxia/genetics , Gene Expression Profiling , Disease Models, Animal , RNA, Circular/genetics , RNA, Competitive Endogenous
11.
Cancer Lett ; 589: 216836, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556105

ABSTRACT

Despite the approval of immune checkpoint blockade (ICB) therapy for various tumor types, its effectiveness is limited to only approximately 15% of patients with microsatellite instability-high (MSI-H) or mismatch repair deficiency (dMMR) colorectal cancer (CRC). Approximately 80%-85% of CRC patients have a microsatellite stability (MSS) phenotype, which features a rare T-cell infiltration. Thus, elucidating the mechanisms underlying resistance to ICB in patients with MSS CRC is imperative. In this study, we demonstrate that ubiquitin-specific peptidase 4 (USP4) is upregulated in MSS CRC tumors and negatively regulates the immune response against tumors in CRC. Additionally, USP4 represses the cellular interferon (IFN) response and antigen presentation and impairs PRR signaling-mediated cell death. Mechanistically, USP4 impedes the nuclear localization of interferon regulator Factor 3 (IRF3) by deubiquitinating the K63-polyubiquitin chain of TRAF6 and IRF3. Knockdown of USP4 enhances the infiltration of T cells in CRC tumors and overcomes ICB resistance in an MC38 syngeneic mouse model. Moreover, published datasets revealed that patients showing higher USP4 expression exhibited decreased responsiveness to anti-PD-L1 therapy. These findings highlight an essential role of USP4 in the suppression of antitumor immunity in CRC.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Interferons , Neoplastic Syndromes, Hereditary , Animals , Mice , Humans , Interferons/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Microsatellite Instability , Deubiquitinating Enzymes/genetics , Interferon Regulatory Factor-3/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
12.
Front Immunol ; 15: 1341632, 2024.
Article in English | MEDLINE | ID: mdl-38444845

ABSTRACT

Biologics play a positive and effective role in the treatment of immune-related dermatoses. However, many other immune-related diseases have also manifested along with biologics treatment. Paradoxical reaction through immune-related dermatoses refer to the new onset or exacerbation of other immune-mediated dermatoses (mainly psoriasis and atopic dermatitis) after biologics treatment of inflammatory dermatoses (mainly psoriasis and atopic dermatitis), such as new atopic dermatitis (AD) in psoriasis (PsO) treatment and new PsO in AD treatment. A common genetic background and Inflammatory pathway are possible pathogenesis. Faced with paradoxical reactions, the choice of therapy needs to be directed toward therapies effective for both diseases, such as Janus kinase (JAK) inhibitors. The Janus kinase and signal transducer and activator of transcription (JAK-STAT) pathway plays an important role in the inflammatory pathway, and has been widely used in the treatment of AD and PsO in recent years. This article focuses on JAK inhibitors such as tofacitinib, baricitinib, ruxolitinib, Abrocitinib, upadacitinib, and deucravacitinib, to explore the possible application in treatment of paradoxical reactions. Common side effects, baseline risk factors and safety use of JAK inhibitors were discussed.


Subject(s)
Biological Products , Dermatitis, Atopic , Janus Kinase Inhibitors , Psoriasis , Humans , Janus Kinase Inhibitors/adverse effects , Psoriasis/drug therapy , Janus Kinases
13.
Vet Microbiol ; 292: 110038, 2024 May.
Article in English | MEDLINE | ID: mdl-38458047

ABSTRACT

In 2020, an H5N1 avian influenza virus of clade 2.3.4.4b was detected in Europe for the first time and was spread throughout the world by wild migratory birds, resulting in the culling of an unprecedented number of wild birds and poultry due to the epidemic. In February 2023, we isolated and identified a strain of H5N1 high pathogenicity avian influenza virus from a swab sample from a grey crane in Ningxia, China. Phylogenetic analysis of the Hemagglutinin (HA) gene showed that the virus belonged to clade 2.3.4.4b, and several gene segments were closely related to H5N1 viruses infecting humans in China. Analysis of key amino acid sites revealed that the virus contained multiple amino acid substitutions that facilitate enhanced viral replication and mammalian pathogenicity. The results of animal challenge experiments showed that the virus is highly pathogenic to chickens, moderately pathogenic to BALB/c mice, and highly infectious but not lethal to mallards. Moreover, the virus exhibited minor antigenic drift compared with the H5-Re14 vaccine strain. To this end, we need to pay more attention to the monitoring of wild birds to prevent further spread of viruses to poultry and mammals, including humans.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Rodent Diseases , Humans , Mice , Animals , Poultry , Chickens , Phylogeny , Virulence , Ducks , Animals, Wild , Mammals
14.
Front Med (Lausanne) ; 11: 1337206, 2024.
Article in English | MEDLINE | ID: mdl-38426163

ABSTRACT

Objective: Depression is a common complication in Takayasu arteritis (TA). Disorders of the immune system play an important role in both diseases. This study aimed to clarify the feature of cytokines in TA patients with depression. Methods: In this cross-sectional study, serum cytokines were tested in 40 TA patients and 11 healthy controls using the Bio-Plex Magpix System (Bio-Rad®). The state of depression was measured by the Zung Self-Rating Depression Scale (SDS) in TA patients. Logistic regression analysis was performed to find the risk factors of depression in patients with TA. Results: TA patients with depression had higher ESR, hsCRP, NIH, and ITAS.A than patients without depression (16.00 [10.00, 58.50]mm/H vs. 7.50 [4.50, 17.75]mm/H, p = 0.013; 7.60 [2.32, 46.52]mg/L vs. 0.71 [0.32, 4.37]mg/L, p = 0.001; 2.00 [2.00, 3.00] vs. 1.00 [0.00, 2.00], p = 0.007; 7.00 [4.00, 9.50] vs. 1.50 [0.00, 5.75], p = 0.012, respectively). Additionally, the lower age of onset and levels of IL-4, IL-13, eotaxin, and IP-10 were observed in the depressed group compared with the non-depressed (23.50 [19.25, 32.50]pg./ml vs. 37.00 [23.25, 42.50]pg./ml, p = 0.017; 2.80 [2.17, 3.18]pg./ml vs. 3.51 [3.22, 4.66]pg./ml, p < 0.001; 0.66 [0.60, 1.12]pg./ml vs. 1.04 [0.82, 1.25]pg./ml, p = 0.008; 46.48 [37.06, 61.75]pg./ml vs. 69.14 [59.30, 92.80]pg./ml, p = 0.001; 184.50 [138.23, 257.25]pg./ml vs. 322.32 [241.98, 412.60]pg./ml, p = 0.005, respectively). The lower level of IL-4 and age of onset were the independent risk factors for depression in TA patients (OR [95% CI] 0.124 [0.018, 0.827], p = 0.031; 0.870 [0.765, 0.990], p = 0.035, respectively). Conclusion: Our data suggested that lower cytokine levels, especially IL-4, might be involved in the development of TA patients with depression. Clinicians can probably use serum IL-4 level testing as a potential indicator of depression in TA.

15.
Microsyst Nanoeng ; 10: 24, 2024.
Article in English | MEDLINE | ID: mdl-38344149

ABSTRACT

Stress tolerance plays a vital role in ensuring the effectiveness of piezoresistive sensing films used in flexible pressure sensors. However, existing methods for enhancing stress tolerance employ dome-shaped, wrinkle-shaped, and pyramidal-shaped microstructures in intricate molding and demolding processes, which introduce significant fabrication challenges and limit the sensing performance. To address these shortcomings, this paper presents periodic microslits in a sensing film made of multiwalled carbon nanotubes and polydimethylsiloxane to realize ultrahigh stress tolerance with a theoretical maximum of 2.477 MPa and a sensitivity of 18.092 kPa-1. The periodic microslits permit extensive deformation under high pressure (e.g., 400 kPa) to widen the detection range. Moreover, the periodic microslits also enhance the sensitivity based on simultaneously exhibiting multiple synapses within the sensing interface and between the periodic sensing cells. The proposed solution is verified by experiments using sensors based on the microslit strategy for wind direction detection, robot movement sensing, and human health monitoring. In these experiments, vehicle load detection is achieved for ultrahigh pressure sensing under an ultrahigh pressure of over 400 kPa and a ratio of the contact area to the total area of 32.74%. The results indicate that the proposed microslit strategy can achieve ultrahigh stress tolerance while simplifying the fabrication complexity of preparing microstructure sensing films.

16.
Nat Prod Bioprospect ; 14(1): 17, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407685

ABSTRACT

Neurodegenerative diseases (NDs) are common chronic diseases arising from progressive damage to the nervous system. Here, in-house natural product database screening revealed that libertellenone C (LC) obtained from the fermentation products of Arthrinium arundinis separated from the gut of a centipede collected in our Tongji campus, showed a remarkable neuroprotective effect. Further investigation was conducted to clarify the specific mechanism. LC dose-dependently reversed glutamate-induced decreased viability, accumulated reactive oxygen species, mitochondrial membrane potential loss, and apoptosis in SH-SY5Y cells. Network pharmacology analysis predicted that the targets of LC were most likely directly related to oxidative stress and the regulation of inflammatory factor-associated signaling pathways. Further study demonstrated that LC attenuated nitrite, TNF-α, and IL-1ß production and decreased inducible nitric oxide synthase and cyclooxygenase expression in lipopolysaccharide-induced BV-2 cells. LC could directly inhibit NLRP3 inflammasome activation by decreasing the expression levels of NLRP3, ASC, cleaved Caspase-1, and NF-κB p65. Our results provide a new understanding of how LC inhibits the NLRP3 inflammasome in microglia, providing neuroprotection. These findings might guide the development of effective LC-based therapeutic strategies for NDs.

17.
Sci Rep ; 14(1): 5012, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424109

ABSTRACT

For the lack of precise monitoring and accurate assessment models for air quality, this paper fully considers such constraints and establishes an evaluation model of air pollution emission level to evaluate the air pollution emission level of Wuhan-a city in central China. The model uses entropy weight method including important indicators of air pollution into the integrated optimization of air quality assessment, laying the basis for sources of pollution and the reasonable and effective city development. The total emissions of air pollution for Wuhan shows a gradual upward trend over time, mainly coming from industrial pollution. The government can reduce air pollution by focusing on detecting major polluting industries, promoting industrial technological progress and innovation, and strengthening the effective implementation of emission trading system.

18.
Clin Interv Aging ; 19: 57-66, 2024.
Article in English | MEDLINE | ID: mdl-38223134

ABSTRACT

Background: Total hip arthroplasty (THA) has become the first-choice treatment for elderly patients with end-stage hip disease. The high amount of hidden blood loss (HBL) in overweight and obese patients after THA not only affects rapid recovery, but also results in a greater economic burden. We aimed to identify risk factors that contribute to elevated HBL in overweight and obese patients after THA by retrospective analysis, and establish a nomogram prediction model for massive HBL in overweight and obese patients after THA. Methods: A total of 505 overweight and obese patients treated with THA were included and randomly divided into modeling and validation sets according to a 7:3 ratio. The demographic and relevant clinical data of the patients were collected. The independent risk factors affecting HBL after THA in overweight and obese patients were obtained by Pearson, independent sample T-test, and multiple linear regression analyses. R software was used to establish a nomogram prediction model for postoperative HBL, as well as a receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results: HBL was 911±438 mL, accounting for 79.5±13.1% of the total perioperative blood loss (1104±468 mL). A multiple linear regression analysis showed that HBL was associated with necrosis of the femoral head, absence of hypertension, longer operative time, higher preoperative erythrocytes, and higher preoperative D-dimer levels. The areas under the ROC curve (AUC) for the modeling and validation sets were 0.751 and 0.736, respectively, while the slope of the calibration curve was close to 1. The DCA curve demonstrated a better net benefit at a risk of HBL ≥1000 ml in both the training and validation groups. Conclusion: HBL was an important component of total blood loss (TBL) after THA in overweight and obese patients. Necrosis of the femoral head, absence of hypertension, longer operative time, higher preoperative erythrocytes, and higher preoperative D-dimer levels were independent risk factors for postoperative HBL in these patients. The predictive model constructed based these data had better discriminatory power and accuracy, and could result in better net benefit for patients.


Subject(s)
Arthroplasty, Replacement, Hip , Femur Head Necrosis , Hypertension , Humans , Aged , Blood Loss, Surgical , Arthroplasty, Replacement, Hip/adverse effects , Overweight/complications , Retrospective Studies , Femur Head Necrosis/complications , Nomograms , Postoperative Hemorrhage , Obesity/complications , Obesity/surgery , Risk Factors , Hypertension/complications
19.
J Org Chem ; 89(2): 1209-1219, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38192075

ABSTRACT

Guided by the Global Natural Products Social (GNPS) molecular networking strategy, five undescribed eremophilane-type sesquiterpenoid derivatives (1-5) were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of plant Hypericum beanii collected in Shennongjia Forestry District, Hubei Province. Dipeniroqueforins A-B (1-2), representing a lactam-type sesquiterpenoid skeleton with a highly symmetrical and homodimeric 5/6/6-6/6/5 hexacyclic system, are reported within the eremophilane-type family for the first time. Peniroqueforin D (5) represents the first example of a 1,2-seco eremophilane-type sesquiterpenoid derivative featuring an undescribed 7/6-fused ring system. The structures of these compounds were elucidated by various spectroscopic analyses, DP4+ probability analyses, ECD calculations, and single-crystal X-ray diffraction experiments. Furthermore, these isolates were evaluated for cytotoxicity, and the result uncovered that compound 1 displayed broad-spectrum activity. Further mechanistic study revealed that compound 1 could significantly upregulate the mRNA expression of genes related to the oxidative induction, leading to the abnormal ROS levels in tumor cells and ultimately causing tumor cell apoptosis.


Subject(s)
Antineoplastic Agents , Penicillium , Sesquiterpenes , Polycyclic Sesquiterpenes , Molecular Structure , Sesquiterpenes/chemistry , Penicillium/chemistry , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...