Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Chin Med ; 19(1): 42, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444022

ABSTRACT

BACKGROUND: Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS: Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS: CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS: We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.

2.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38551405

ABSTRACT

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Subject(s)
Dementia, Vascular , Lignans , Neuroblastoma , Polycyclic Compounds , Rats , Humans , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Maze Learning/physiology , Hypoxia , Cognition , Hippocampus , Oxygen/pharmacology , Cyclooctanes
3.
Food Sci Nutr ; 12(2): 1035-1045, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370061

ABSTRACT

Resveratrol (RSV) is a natural polyphenol compound found in various plants that has been shown to have potential benefits for preventing aging and supporting cardiovascular health. However, the specific signal pathway by which RSV protects the aging heart is not yet well understood. This study aimed to explore the protective effects of RSV against age-related heart injury and investigate the underlying mechanisms using a D-galactose-induced aging model. The results of the study indicated that RSV provided protection against age-related heart impairment in mice. This was evidenced by the reduction of cardiac histopathological changes as well as the attenuation of apoptosis. RSV-induced cardioprotection was linked to a significant increase in antioxidant activity and mitochondrial transmembrane potential, as well as a reduction in oxidative damage. Additionally, RSV inhibited the production of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Furthermore, the expression of toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), and notch 1 protein were inhibited by RSV, indicating that inhibiting the Notch/NF-κB pathway played a critical role in RSV-triggered heart protection in aging mice. Moreover, further data on intestinal function demonstrated that RSV significantly increased short-chain fatty acids (SCFAs) in intestinal contents and reduced the pH value in the feces of aging mice. RSV alleviated aging-induced cardiac dysfunction through the suppression of oxidative stress and inflammation via the Notch/NF-κB pathway in heart tissue. Furthermore, this therapeutic effect was found to be associated with its protective roles in the intestine.

5.
World J Gastroenterol ; 29(44): 5894-5906, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38111507

ABSTRACT

BACKGROUND: Donor-recipient size mismatch (DRSM) is considered a crucial factor for poor outcomes in liver transplantation (LT) because of complications, such as massive intraoperative blood loss (IBL) and early allograft dysfunction (EAD). Liver volumetry is performed routinely in living donor LT, but rarely in deceased donor LT (DDLT), which amplifies the adverse effects of DRSM in DDLT. Due to the various shortcomings of traditional manual liver volumetry and formula methods, a feasible model based on intelligent/interactive qualitative and quantitative analysis-three-dimensional (IQQA-3D) for estimating the degree of DRSM is needed. AIM: To identify benefits of IQQA-3D liver volumetry in DDLT and establish an estimation model to guide perioperative management. METHODS: We retrospectively determined the accuracy of IQQA-3D liver volumetry for standard total liver volume (TLV) (sTLV) and established an estimation TLV (eTLV) index (eTLVi) model. Receiver operating characteristic (ROC) curves were drawn to detect the optimal cut-off values for predicting massive IBL and EAD in DDLT using donor sTLV to recipient sTLV (called sTLVi). The factors influencing the occurrence of massive IBL and EAD were explored through logistic regression analysis. Finally, the eTLVi model was compared with the sTLVi model through the ROC curve for verification. RESULTS: A total of 133 patients were included in the analysis. The Changzheng formula was accurate for calculating donor sTLV (P = 0.083) but not for recipient sTLV (P = 0.036). Recipient eTLV calculated using IQQA-3D highly matched with recipient sTLV (P = 0.221). Alcoholic liver disease, gastrointestinal bleeding, and sTLVi > 1.24 were independent risk factors for massive IBL, and drug-induced liver failure was an independent protective factor for massive IBL. Male donor-female recipient combination, model for end-stage liver disease score, sTLVi ≤ 0.85, and sTLVi ≥ 1.32 were independent risk factors for EAD, and viral hepatitis was an independent protective factor for EAD. The overall survival of patients in the 0.85 < sTLVi < 1.32 group was better compared to the sTLVi ≤ 0.85 group and sTLVi ≥ 1.32 group (P < 0.001). There was no statistically significant difference in the area under the curve of the sTLVi model and IQQA-3D eTLVi model in the detection of massive IBL and EAD (all P > 0.05). CONCLUSION: IQQA-3D eTLVi model has high accuracy in predicting massive IBL and EAD in DDLT. We should follow the guidance of the IQQA-3D eTLVi model in perioperative management.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Humans , Male , Female , Liver Transplantation/adverse effects , Living Donors , Retrospective Studies , End Stage Liver Disease/diagnosis , End Stage Liver Disease/surgery , End Stage Liver Disease/etiology , Severity of Illness Index , Risk Factors , Graft Survival
6.
Adv Sci (Weinh) ; 10(18): e2206533, 2023 06.
Article in English | MEDLINE | ID: mdl-37088726

ABSTRACT

Osteoblasts play an important role in the regulation of bone homeostasis throughout life. Thus, the damage of osteoblasts can lead to serious skeletal diseases, highlighting the urgent need for novel pharmacological targets. This study introduces chemical genetics strategy by using small molecule forskolin (FSK) as a probe to explore the druggable targets for osteoporosis. Here, this work reveals that transglutaminase 2 (TGM2) served as a major cellular target of FSK to obviously induce osteoblast differentiation. Then, this work identifies a previously undisclosed allosteric site in the catalytic core of TGM2. In particular, FSK formed multiple hydrogen bonds in a saddle-like domain to induce an "open" conformation of the ß-sandwich domain in TGM2, thereby promoting the substrate protein crosslinks by incorporating polyamine. Furthermore, this work finds that TGM2 interacted with several mitochondrial homeostasis-associated proteins to improve mitochondrial dynamics and ATP production for osteoblast differentiation. Finally, this work observes that FSK effectively ameliorated osteoporosis in the ovariectomy mice model. Taken together, these findings show a previously undescribed pharmacological allosteric site on TGM2 for osteoporosis treatment, and also provide an available chemical tool for interrogating TGM2 biology and developing bone anabolic agent.


Subject(s)
Osteoporosis , Protein Glutamine gamma Glutamyltransferase 2 , Mice , Animals , Female , Allosteric Regulation , Osteogenesis , Osteoblasts/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism
7.
Food Funct ; 13(21): 11200-11209, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36218221

ABSTRACT

The study aimed to determine whether gut-brain communication could be modulated by epigallocatechin-3-gallate (EGCG) in a mouse aging model that was established by daily injection of D-galactose (D-gal) for 10 weeks. Our results showed that EGCG could improve aging-associated changes by increasing the immune organ indexes, brain index, and learning and memory ability in vivo. EGCG-triggered aging prevention was associated with the reduction of lipid peroxidation and elevation of enzymatic and non-enzymatic antioxidant activities in the brain. Concomitantly, treatment of D-gal-induced aging in mice with EGCG significantly reduced corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone, suggesting that EGCG-exerted protection of the aging brain was involved in the inhibition of the hypothalamic-pituitary-adrenal (HPA) axis. Further data concerning intestinal function showed that EGCG could enhance fecal moisture in vitro and reduce the pH value of feces in aging mice when compared to the D-gal group, suggesting that EGCG played beneficial roles in the intestine of aging mice. Moreover, short-chain fatty acids (SCFAs), the mediators of gut-brain communication, were significantly increased in the intestinal contents of aging mice by treatment with EGCG. Therefore, the tea polyphenol EGCG showing anti-aging properties was demonstrated to be implicated in modulating gut-brain communication by attenuating the HPA axis and enhancing the content of SCFAs.


Subject(s)
Catechin , Galactose , Animals , Mice , Galactose/adverse effects , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Catechin/pharmacology , Aging , Brain , Disease Models, Animal , Tea/chemistry
9.
ACS Nano ; 16(6): 9228-9239, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35622408

ABSTRACT

Carbon quantum dots (CQDs) offer huge potential due to their enzymatic properties as compared to natural enzymes. Thus, discovery of CQDs-based nanozymes with low toxicity from natural resources, especially daily food, implies a promising direction for exploring treatment strategies for human diseases. Here, we report a CQDs-based biocompatible nanozyme prepared from chlorogenic acid (ChA), a major bioactive natural product from coffee. We found that ChA CQDs exhibited obvious GSH oxidase-like activities and subsequently promoted cancer cell ferroptosis by perturbation of GPX4-catalyzed lipid repair systems. In vivo, ChA CQDs dramatically suppressed the tumor growth in HepG2-tumor-bearing mice with negligible side toxicity. Particularly, in hepatoma H22-bearing mice, ChA CQDs recruited massive tumor-infiltrating immune cells including T cells, NK cells, and macrophages, thereby converting "cold" to "hot" tumors for activating systemic antitumor immune responses. Taken together, our study suggests that natural product-derived CQDs from coffee can serve as biologically safe nanozymes for anticancer therapeutics and may aid the development of nanotechnology-based immunotherapeutic.


Subject(s)
Ferroptosis , Neoplasms , Quantum Dots , Humans , Mice , Animals , Carbon , Coffee
10.
Pharmacol Res ; 176: 106046, 2022 02.
Article in English | MEDLINE | ID: mdl-35007708

ABSTRACT

Ischemic stroke remains one of the leading causes of death worldwide, thereby highlighting the urgent necessary to identify new therapeutic targets. Deoxyhypusine hydroxylase (DOHH) is a fundamental enzyme catalyzing a unique posttranslational hypusination modification of eukaryotic translation initiation factor 5A (eIF5A) and is highly involved in the progression of several human diseases, including HIV-1 infection, cancer, malaria, and diabetes. However, the potential therapeutic role of pharmacological regulation of DOHH in ischemic stroke is still poorly understood. Our study first discovered a natural small-molecule brazilin (BZ) with an obvious neuroprotective effect against oxygen-glucose deprivation/reperfusion insult. Then, DOHH was identified as a crucial cellular target of BZ using HuProt™ human proteome microarray. By selectively binding to the Cys232 residue, BZ induced a previously undisclosed allosteric effect to significantly increase DOHH catalytic activity. Furthermore, BZ-mediated DOHH activation amplified mitophagy for mitochondrial function and morphology maintenance via DOHH/eIF5A hypusination signaling pathway, thereby protecting against ischemic neuronal injury in vitro and in vivo. Collectively, our study first identified DOHH as a previously unreported therapeutic target for ischemic stroke, and provided a future drug design direction for DOHH allosteric activators using BZ as a novel molecular template.


Subject(s)
Benzopyrans/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Stroke/drug therapy , Mixed Function Oxygenases/metabolism , Neuroprotective Agents/therapeutic use , Animals , Benzopyrans/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Cells, Cultured , Female , Humans , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice, Inbred ICR , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Pregnancy , Protein Processing, Post-Translational , Rats, Wistar , Zebrafish
11.
Pest Manag Sci ; 78(2): 603-611, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34619015

ABSTRACT

BACKGROUND: Neuroligin (NLG) protein is a nerve cell adhesion molecule and plays a key role in the precision apposition of presynaptic domains on inhibitory and excitatory synapses. Existing studies mainly focused on the function of NLG3 against the excitatory channel. However, the interaction between insect NLG3 and ionotropic GABA receptor, which is the main inhibitory channel, remains unclear. In this study, the Nlg3 of common cutworm (CCW), Spodoptera litura Fabricius, one important agricultural Lepidopteron, is selected to explore its function in the inhibitory channel. RESULTS: The SlNlg3 was obtained and the SlNLG3 contains the characteristic features including transmembrane domain, PDZ-binding motif and type-B carboxylesterases signature 2 motif. The SlNlg3 messenger RNA (mRNA) was most abundant in midgut, and exhibited multiple expression patterns in different developmental stages and tissues or body parts. Compared with the single injection of SlRDL1, the median effective concentration value of GABA in activating currents was smaller in Xenopus laevis oocytes co-injected with SlRDL1 and SlNlg3. In addition, SlNlg3 could enhance the GABA-induced current of homomeric SlRDL1 channel from -391.86 ± 15.41 to -2152.51 ± 30.09 nA. DsSlNlg3 depressed the expression level of SlNlg3 mRNA more than 64.29% at 6 h. After exposure to median lethal dose of fluralaner, the mortality of CCW injected with dsSlNlg3 was significantly decreased by 13.34% and 30.00% at 24 and 48 h, respectively, compared to injection of dsEGFP. CONCLUSION: NLG3 should have physiological function on ionotropic GABA receptor in vitro, which provided a favorable foundation for further research on the physiological function of Nlg gene in Lepidopteron. © 2021 Society of Chemical Industry.


Subject(s)
Cell Adhesion Molecules, Neuronal , Nerve Tissue Proteins , Animals , Cell Adhesion Molecules, Neuronal/genetics , Membrane Proteins , Spodoptera/genetics , gamma-Aminobutyric Acid
12.
J Agric Food Chem ; 69(30): 8415-8427, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34283603

ABSTRACT

In the present study, we have designed and synthesized a series of 42 novel sulfonylurea compounds with ortho-alkoxy substitutions at the phenyl ring and evaluated their herbicidal activities. Some target compounds showed excellent herbicidal activity against monocotyledon weed species. When applied at 7.5 g ha-1, 6-11 exhibited more potent herbicidal activity against barnyard grass (Echinochloa crus-galli) and crab grass (Digitaria sanguinalis) than commercial acetohydroxyacid synthase (AHAS; EC 2.2.1.6) inhibitors triasulfuron, penoxsulam, and nicosulfuron at both pre-emergence and postemergence conditions. 6-11 was safe for peanut for postemergence application at this ultralow dosage, suggesting that it could be considered a potential herbicide candidate for peanut fields. Although 6-11 and triasulfuron share similar chemical structures and have close Ki values for plant AHAS, a significant difference has been observed between their LUMO maps from DFT calculations, which might be a possible factor that leads to their different behaviors toward monocotyledon weed species.


Subject(s)
Herbicides , Alcohols , Digitaria , Herbicides/pharmacology , Structure-Activity Relationship , Sulfonylurea Compounds/pharmacology
13.
Int J Ophthalmol ; 13(8): 1257-1265, 2020.
Article in English | MEDLINE | ID: mdl-32821680

ABSTRACT

AIM: To quantitatively evaluate the effect of the combined use of 577-nm subthreshold micropulse macular laser (SML) and multi-point mode pan retinal laser photocoagulation (PRP) on severe non-proliferative diabetic retinopathy (NPDR) with central-involved diabetic macular edema (CIDME) using optical coherence tomography angiography (OCTA). METHODS: In this observational clinical study, 86 eyes of 86 NPDR patients with CIDME who underwent SML and PRP treatment were included. Images were obtained 1d before laser and post-laser (1d, 1wk, 1, 3, and 6mo) using AngioVue software 2.0. Best corrected visual acuity (BCVA, LogMAR), foveal avascular zone area (FAZ), choriocapillary flow area (ChF), parafoveal vessel density (PVD), capillary density inside disc (CDD), peripapillary capillary density (PCD), macular ganglion cell complex thickness (mGCCT), central macular thickness (CMT), and subfoveal choroidal thickness (ChT) were compared between pre- and post-laser treatment. RESULTS: BCVA remained stable during 6mo post-laser therapy (pre-laser vs 6mo post-laser: 0.53±0.21 vs 0.5±0.15, P>0.05). PVD, ChF, ChT, CMT, and mGCCT significantly increased 1d post-laser therapy [pre-laser vs 1d post-laser: superficial PVD (%), 40.51±3.42 vs 42.43±4.68; deep PVD (%), 42.66±3.67 vs 44.78±4.52; ChF, 1.72±0.21 vs 1.9±0.12 mm2; ChT, 302.45±69.74 vs 319.38±70.93 µm; CMT, 301.65±110.78 vs 320.86±105.62 µm; mGCCT, 105.71±10.72 vs 115.46±9.64 µm; P<0.05]. However, PVD, ChF and ChT decreased to less than baseline level at 6mo post-laser therapy (pre-laser vs 6mo post-laser: superficial PVD (%), 40.51±3.42 vs 36.32±4.19; deep PVD (%), 42.66±3.67 vs 38.76±3.74; ChF, 1.72±0.21 vs 1.62±0.09 mm2; ChT, 302.45±69.74 vs 289.61±67.55 µm; P<0.05), whereas CMT and mGCCT decreased to baseline level at 6mo post-laser therapy (CMT, 301.65±110.78 vs 297.77±90.23 µm; mGCCT, 105.71±10.72 vs 107.05±11.81 µm; P>0.05). Moreover, FAZ continuously increased while CDD and PCD continuously decreased in 6mo after laser therapy. CMT and ChT had a significant positive correlation with ChF and PVD in most post-laser stages. CONCLUSION: During a 6-month follow-up period after combined use of SML and PRP therapy, BCVA remained stable and there was a decreased trend in macular edema. Blood flow increased at 1d post-laser therapy and reduced at 6mo post-laser therapy.

14.
J Hazard Mater ; 394: 122521, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32279005

ABSTRACT

Broflanilide, a novel meta-diamide insecticide, shows high insecticidal activity against agricultural pests and is scheduled to be launched onto the market in 2020. However, little information about its potential toxicological effects on fish has been reported. In this study, broflanilide showed low toxicity to the zebrafish, Danio rerio, with LC50 > 10 mg L-1 at 96 h and also did not inhibit GABA-induced currents of the heteromeric Drα1ß2Sγ2 GABA receptor. Broflanilide showed medium bioconcentration level with a bioconcentration factor at steady state (BCFss) of 10.02 and 69.40 in D. rerio at 2.00 mg L-1 and 0.20 mg L-1, respectively. In the elimination process, the concentration of broflanilide rapidly decreased within two days and slowly dropped below the limit of quantification after ten days. In the 2.00 mg L-1 broflanilide treatment, CYP450 activity was significantly increased up to 3.11-fold during eight days. Glutathione-S- transferase (GST) activity significantly increased by 91.44 % within four days. In conclusion, the acute toxicity of broflanilide was low, but it might induce chronic toxicity, affecting metabolism. To our knowledge, this is the first report of the toxicological effects of broflanilide on an aquatic organism, which has the potential to guide the use of broflanilide in the field.


Subject(s)
Benzamides/toxicity , Insecticides/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Benzamides/metabolism , Bioaccumulation , Cytochrome P-450 Enzyme System/metabolism , Glutathione Transferase/metabolism , Insecticides/metabolism , Oocytes/drug effects , Receptors, GABA/drug effects , Water Pollutants, Chemical/metabolism , Xenopus laevis
15.
Mol Plant ; 12(10): 1353-1365, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31145999

ABSTRACT

Polyploidization is a major driver of speciation and its importance to plant evolution has been well recognized. Bamboos comprise one diploid herbaceous and three polyploid woody lineages, and are members of the only major subfamily in grasses that diversified in forests, with the woody members having a tree-like lignified culm. In this study, we generated four draft genome assemblies of major bamboo lineages with three different ploidy levels (diploid, tetraploid, and hexaploid). We also constructed a high-density genetic linkage map for a hexaploid species of bamboo, and used a linkage-map-based strategy for genome assembly and identification of subgenomes in polyploids. Further phylogenomic analyses using a large dataset of syntenic genes with expected copies based on ploidy levels revealed that woody bamboos originated subsequent to the divergence of the herbaceous bamboo lineage, and experienced complex reticulate evolution through three independent allopolyploid events involving four extinct diploid ancestors. A shared but distinct subgenome was identified in all polyploid forms, and the progenitor of this subgenome could have been critical in ancient polyploidizations and the origin of woody bamboos. Important genetic clues to the unique flowering behavior and woody trait in bamboos were also found. Taken together, our study provides significant insights into ancient reticulate evolution at the subgenome level in the absence of extant donor species, and offers a potential model scenario for broad-scale study of angiosperm origination by allopolyploidization.


Subject(s)
Genomics , Poaceae/genetics , Poaceae/metabolism , Wood/metabolism , Flowers/growth & development , Genome, Plant/genetics , Molecular Sequence Annotation , Poaceae/growth & development , Polyploidy
16.
J Asian Nat Prod Res ; 21(5): 476-493, 2019 May.
Article in English | MEDLINE | ID: mdl-29322879

ABSTRACT

Diabetic cardiomyopathy (DCM) is one of the chief diabetes mellitus complications. Inflammation factors may be one reason for the damage from DM. The purpose of this research is to study the potential protective effects of puerarin on DM and the possible mechanisms of action related to NF-κB signal pathway. Following administration of puerarin to the disease model rat, several changes were observed including the changes of serum biochemical index, improved diastolic dysfunction, and enhanced endogenous antioxidant enzymes activities, further NF-κB signaling activation. Puerarin showed cardio-protective effects on DCM by inhibiting inflammation, and it might be a potential candidate for the treatment of DCM.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/prevention & control , Inflammation/drug therapy , Isoflavones/pharmacology , Animals , Cell Line , Cells, Cultured , Glucose/toxicity , Isoflavones/chemistry , Molecular Structure , Myoblasts, Cardiac/drug effects , Myocardium/cytology , NF-kappa B , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
18.
Int J Ophthalmol ; 11(9): 1545-1549, 2018.
Article in English | MEDLINE | ID: mdl-30225232

ABSTRACT

AIM: To elucidate the trends and characteristics of congenital ectopia lentis (CEL) in southern China. METHODS: CEL patients from China admitted to Zhongshan Ophthalmic Center (ZOC) from January 2006 to December 2015 were recruited in our study. Residence, gender, hospitalization time, age at surgery, and the presence of other ocular abnormalities and system disease were statistically analyzed in different subgroups. RESULTS: Four hundred and thirty-seven hospitalizations (306 in-patients) diagnosed with CEL from a total of 283 308 hospitalizations were identified, which accounted for 0.15% of the total in-patients. Of the identified CEL in-patients, the total ratio of boys to girls was 2.22:1. Based on a subgroup analysis according to age, patients aged 12-18 years old constituted the highest proportion (31.70%) of all hospitalized CEL patients, and those 0-3 year old constituted the lowest proportion (8.82%) of the total number. The number of CEL increased from 18 to 72 and the hospital based prevalence increased from 8.60% to 18.10% from 2006 to 2015, and the average age at surgery decreased from 9 years old in 2006 to 7.6 years old in 2015. CONCLUSION: The results reveal upward trends in both the number of CEL hospitalizations and hospital based prevalence of CEL in this 10-year study period, but a reduction in the age at surgery, which may reflect the increase of public awareness of children's eye care in China.

19.
Anal Chim Acta ; 1036: 26-32, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30253834

ABSTRACT

Phosphorus-doped graphene (P-RGO) was synthesized and employed as active electrode material to construct electrochemical sensor for acetaminophen (AP). The P-RGO coated glass carbon electrode (P-RGO/GCE) showed an excellent electrocatalytic activity for the oxidation of AP, resulted from highly enhanced electrochemical conductivity and accelerated electron transfer. The experimental conditions for AP detection were optimized, and under the optimal condition, a linear relationship between current intensity and concentration of AP was obtained in the range of 1.5-120 µM with a detection limit of 0.36 µM (S/N = 3). The developed sensor showed high selectivity for AP in the presence of various common species, excellent reproducibility and stability. The present sensor was also successfully applied for AP detection in pharmaceutical tablet samples.


Subject(s)
Acetaminophen/analysis , Electrochemical Techniques , Graphite/chemistry , Phosphorus/chemistry , Electric Conductivity , Electrodes
20.
PLoS One ; 13(8): e0203066, 2018.
Article in English | MEDLINE | ID: mdl-30138460

ABSTRACT

It remains controversial as to whether mechanical thrombectomy (MT) is safer and more beneficial in patients with large vessel occlusion stroke (LVOS) presenting with a National Institutes of Health Stroke Scale score ≤ 8. We therefore conducted a meta-analysis of the published data.We searched PubMed and Embase and pooled relevant data in the meta-analyses using fixed effects models. Only studies that directly compared best medical therapy alone (BMT) with MT were included. We used odds ratios to analyze the associations between MT and 90-day functional outcome (evaluated using the modified Rankin Scale (mRS)), mortality, and rates of symptomatic intracerebral hemorrhage (sICH) in patients with LVOS and minor symptoms. Five studies including a total of 581 patients met our inclusion criteria. A significant difference was found that the patients treated with MT were associated with improved 90-day mRS score (OR, 1.68; 95% CI, 1.08-2.61) compared with BMT group. There was no difference in 90-day mortality between the two groups. However, sICH occurred more frequently in the MT group than the BMT group (OR, 3.89; 95% CI, 1.83-8.27). Patients with LVOS with minor or mild symptoms who underwent primary thrombectomy had a significantly improved 90-day mRS score compared to those who received BMT alone. Meanwhile, the risk of sICH was higher in the MT group than that in BMT group. Future randomized clinical controlled trials evaluating the role of endovascular reperfusion for LVOS with minimal symptoms are warranted.


Subject(s)
Arterial Occlusive Diseases/therapy , Endovascular Procedures , Stroke/therapy , Thrombectomy , Arterial Occlusive Diseases/mortality , Humans , Stroke/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...